KI-gestützte Robotersteuerung

Wenn der Cobot zeichnet

Die Kombination von Robotik und künstlicher Intelligenz (KI) verspricht großes Potenzial für die Produktion. Werden Bewegungsanweisungen etwa von einem KI-Algorithmus berechnet, muss nicht für jede neue Fertigungsaufgabe eine Fachperson hinzugezogen werden. Nach diesem Prinzip haben Forschende am IHP-Institut für Integrierte Produktion Hannover einem Cobot das Zeichnen beigebracht.

Dieses , das ausschließlich relevante Kanten enthält, kann von einem Cobot nachgezeichnet werden. (Bild: Susann Reichert / IPH gGmbh)

Dieses , das ausschließlich relevante Kanten enthält, kann von einem Cobot nachgezeichnet werden. (Bild: Susann Reichert / IPH gGmbh)


Kollaborierende Roboter, auch Cobots genannt, übernehmen in der Produktion Aufgaben, die üblicherweise von menschlichen Händen ausgeführt werden. Im Vergleich zu klassischen Industrierobotern sind sie kleiner und flexibler. Sie sind dafür gebaut, Seite an Seite mit Menschen zusammenzuarbeiten. Zudem zeichnen sich Cobots durch eine intuitivere Handhabung und geringeren – allerdings manuellen – Programmieraufwand aus. Der Einsatz lohnt sich daher nur für repetitive Bewegungsabläufe. Aufgaben, bei denen Flexibilität gefordert ist – etwa bei der Fertigung von Einzelstücken nach individuellen Kundenwünschen – können Cobots noch nicht sinnvoll übernehmen. Mit Hilfe von künstlicher Intelligenz (KI) könnte sich dies jedoch ändern. KI-Algorithmen übernehmen dabei die Aufgabe, Bewegungsanweisungen für den Cobot zu erstellen. In Zukunft könnten Cobots somit auch von Personen ohne Programmierkenntnisse bedient werden.

Ein Beispiel für die Verbindung von Cobot und KI haben Forschende am IPH – Institut für Integrierte Produktion Hannover entwickelt. Sie haben einem Cobot beigebracht, Bilder detailliert nachzuzeichnen. Dabei wird ein zuvor unbekanntes Bild mittels KI analysiert und in eine Bewegungsanweisung für den Roboter umgewandelt.

Mit mehreren verarbeitungs-Algorithmen wird ein in ein Schwarz-Weiß-umgewandelt, das ausschließlich relevante Kanten enthält. (Bild: Leonard Engelke / IPH gGmbh)

Mit mehreren verarbeitungs-Algorithmen wird ein in ein Schwarz-Weiß-umgewandelt, das ausschließlich relevante Kanten enthält. (Bild: Leonard Engelke / IPH gGmbh)

Mehrere Schritte

Damit das Bild vom Cobot gezeichnet werden kann, sind zunächst mehrere Bildverarbeitungs-Schritte notwendig. Ziel ist es, das Bild so umzuwandeln, dass nur die wichtigen Kanten übrig bleiben. Für die Bildverarbeitung greifen mehrere Algorithmen ineinander. Zunächst wird das Bild in ein Schwarz-Weiß-Bild umgewandelt. Anschließend wird der Weichzeichner Gaussian Blur angewandt, um Bilderrauschen, Artefakte und kleinere Details zu entfernen. Danach kommt der Canny-Algorithmus (Canny Edge Detector) zum Einsatz: Dieser prüft jeden einzelnen Pixel darauf, wie stark sich dieser von seiner Umgebung abhebt. Pixel, die sich stark abheben, werden als Kante erkannt, alle anderen Pixel werden entfernt. So entsteht ein Schwarz-Weiß-Bild, das ausschließlich relevante Kanten enthält (siehe Zeichnung).

Anschließend erstellt die KI den Programmiercode für den Cobot, der damit das Bild möglichst effizient zeichnen kann. Das Ziel ist es, nicht für jeden Pixel eine eigene Bewegungsanweisung zu erstellen, sondern so viele Pixel wie möglich in einer einzelnen Bewegung zu zeichnen. Die Zeichnung erfolgt also nicht Punkt für Punkt, sondern in langen, verbundenen Linien – überflüssige Bildfragmente werden weggelassen. Die KI trifft dabei die Entscheidungen, welche Bildpunkte tatsächlich relevant sind und welche entfallen werden können.

Möglichkeiten für die Fertigung

Die Kombination aus Robotik und KI-Bilderkennung bietet perspektivisch Möglichkeiten für verschiedene Fertigungsbereiche. So könnten Cobots künftig individuelle Gravuren auf unterschiedliche Produkte aufbringen. Die KI-Bilderkennung erkennt die Größe und Form des Produkts, die Oberflächenbeschaffenheit und das Material und errechnet die richtigen Parameter für den Cobot, der die Gravur aufbringt.

In der Werkstattfertigung könnte ein solcher Roboter ein individuelles Bauteil verschweißen. Benötigt würde dafür die CAD-Datei der Bauteilgeometrie sowie die Schweißnahtposition – die Bewegungsanweisungen für den Roboter errechnet dann ein KI-Algorithmus.

Potenzial verspricht das Zusammenspiel von KI und Cobot auch bei der Qualitätssicherung: Die KI erkennt fehlerhafte Werkstücke, der Cobot sortiert sie aus. Wird die Qualität bereits während des Fertigungsprozesses erfasst, kann die KI bei Abweichungen eigenständig die Parameter anpassen und dadurch Ausschuss vermeiden. Die KI-basierte Qualitätssicherung beim 3D-Druck von individuellen Medizinprodukten hat das IPH bereits im Forschungsprojekt ‘Saviour’ erforscht.

Das könnte Sie auch interessieren

Künstliche Intelligenz hat in den vergangenen Jahren enorme Fortschritte gemacht. Mit Edge Computing rückt sie nah an die Produktion heran. Für Unternehmen verspricht das viel Potenzial für Echtzeit-Anwendungen. Doch wie wenden sie die Technologie effizient an?‣ weiterlesen

Der Digital Product Passport soll den ökologischen und digitalen Wandel forcieren, ist dem Vorschlag der Europäischen Kommission zu entnehmen. Indem entlang der Lebenszyklen von Produkten Informationen digital bereitstehen, sollen Ressourcenverbrauch und Entsorgungslasten massiv reduziert werden. Reparatur, Wiederverwendung, Umwidmung und Verwertung alter Produkte sollen die Kreislaufwirtschaft voranbringen.‣ weiterlesen

Die Nominierten für den Deutschen Zukunftspreis stehen fest: Die drei Teams widmen sich digitalem Licht, effizienter generativer KI und energieeffizienten Halbleitern. Die Preisverleihung des mit 250.000€ dotierten Preises erfolgt am 27. November. ‣ weiterlesen

In einer zunehmend digitalisierten Welt gewinnen autonom wandelbare Industrie-4.0-Infrastrukturen an Bedeutung. Diese autonomen und flexiblen Systeme können sich eigenständig an verändernde Bedingungen anpassen, um aktuelle Herausforderungen in der Produktion zu bewältigen. In der neuen Acatech-Expertise des Forschungsbeirats Industrie 4.0 schafft das Fraunhofer IEM Grundlagen für die nächste Evolutionsstufe in der Produktionssystementwicklung. ‣ weiterlesen

Im it’s OWL Projekt I4.0AutoServ soll eine One-Stop-Shop-Lösung dabei unterstützen, Maschinendaten automatisiert zu erheben, damit auch kleine und mittlere Unternehmen datengetriebene Services schnell und kostengünstig nutzen können. ‣ weiterlesen

Autonomes Navigieren, Pick-and-Place-Anwendungen, Qualitätssicherung - Roboter übernehmen in der Industrie bereits viele wichtige Aufgaben und tragen zur Produktivitätssteigerung bei. Mit KI könnte Robotik künftig flexibler und resilienter werden. Wie sieht diese Kombination aus - und welche Rolle nimmt der Mensch ein?‣ weiterlesen