Die wenigsten Fertigungsumgebungen sind homogen. Maschinen unterschiedlicher Hersteller und unterschiedliche Steuerungen bringen Herausforderungen mit sich, wenn es darum geht, einen Wert aus ihren Daten zu ziehen. Bei FactoryPal will man diesen Herausforderungen mittels Machine Learning begegnen – unter Einbeziehung der Mitarbeiter.
Seit Jahren treibt das Unternehmen Körber die Frage um, wie man den Hype um das Potenzial von künstlicher Intelligenz (KI) und Internet of Things (IoT) in sinnvolle Lösungen für die industrielle Produktion umwandeln kann. Als Körber-Konzern liegt der Fokus auf Fertigungsmaschinen u.a. für die Segmente Pharma, Supply Chain oder Tissue. Dementsprechend haben die Bestrebungen des Unternehmens für digitale Innovationsprozesse genau dort angesetzt, in der Industrie 4.0 für Maschinen.
Selbst die optimierteste Fertigungsanlage besteht aus Maschinen verschiedener Hersteller und diversen Produktionslinien. Das bringt zahlreiche Herausforderungen mit sich, bei denen KI aber auch maschinelles Lernen (ML) wertstiftend eingesetzt werden können – sei es das Koordinieren unterschiedlicher Geschwindigkeiten innerhalb einer Produktionslinie oder die Reduktion von Ausfallzeiten. Am Ende ist die Messlatte für einem effektiven Produktionsablauf die Overall Equipment Effectiveness (OEE), bzw. Gesamtanlageneffektivität. Diese zu steigern, war das Ziel von Körber Digital bei der Gründung von FactoryPal Ende 2019. Das Unternehmen wendete sich zunächst an die Tissue-Industrie. Nicht zuletzt, weil der Körber-Konzern hier ein eigenes Geschäftsfeld hat, das das branchenspezifisches Detailwissen zur Maschinensteuerung und den Produktionsmaschinen liefert. Die entwickelte KI-getriebene, maschinen-agnostische SaaS-Lösung richtet sich mittlerweile jedoch an alle Fertigungsunternehmen in der Prozessindustrie. Die Software ist in der Lage rund 600 Produktionsdaten pro Sekunde zu verarbeiten. Die dabei gewonnen Daten werden ausgewertet und Empfehlungen für optimale Maschineneinstellungen werden in Echtzeit als Nachricht auf mobile Apps an die Ingenieure und Maschinenführer geschickt. Die Daten werden dabei über ein, beim Anwenderunternehmen installiertes IoT-Gateway gesammelt und in eine Cloud übertragen.
Der Nutzen der Softwarelösung hat sich u.a. bei der Umsetzung für einen von Europas führenden Herstellern von Hygienepapieren und Recyclingfasern gezeigt. Die Ausgangssituation war komplex, ging es doch darum die Maschinen-Daten von 30 Produktionslinien in neun europäischen Fabriken in verwertbare Ergebnisse umzuwandeln und die Gesamtanlageneffektivität zu steigern, im Zusammenspeil mit Mensch, Technik und Software. Das Hauptproblem besteht in diesem und ähnlichen Fällen insbesondere in der Datenerfassung – die Komplexität und die große Menge der Daten erschwert eine Auswertung. Zugleich schmälern Fehleinschätzungen und Inkonsistenzen das Vertrauen in die gesammelten Informationen. Um diese Fehleinschätzungen zu verhindern, generiert Körber mit einem eigenen Team die gesamte KI-Pipeline selbst. Wie auch bei anderen Kooperationen galt auch in diesem Fall, dass die Lösung von Anfang an so eng wie möglich an den Bedürfnissen der Anwender ausgerichtet wird.
Eine neue Studie des Capgemini Research Institute geht der Frage nach, wie es um Nachhaltigkeit bei der Nutzung generativer KI (GenAI) steht. Der Studie ‘Developing sustainable Gen AI’ zufolge hat GenAI erhebliche und zunehmende negative Auswirkungen auf die Umwelt.‣ weiterlesen
Ist die Industrie 4.0 eine Revolution? Aus Sicht des Fraunhofer Instituts für System - und Innovationsforschnung lautet die Antwort: nein. Die Forschenden kommen in ihrer Veröffentlichung zu dem Schluss, dass sich eher von einer Evolution sprechen lasse.‣ weiterlesen
Stärkere Regulierungen sowie bessere Gegenmaßnahmen haben laut einer Untersuchung des Security-Spezialisten Check Point dazu geführt, dass die Ransomware-Angfriffe in Deutschland zurückgegangen sind, weltweit haben sie jedoch zugenommen.‣ weiterlesen
Laut einer repräsentativen Umfrage des Bitkom nimmt die digitale Abhängigkeit der deutschen Wirtschaft zu. Mit Blick auf die USA und China stellt dies die Unternehmen vor Herausforderungen.‣ weiterlesen
Innovationsführerschaft und Wettbewerbsfähigkeit sind entscheidende Faktoren für den Erfolg eines Unternehmens. Die Kooperation mit Startups kann etablierte Unternehmen dabei unterstützen Innovationszyklen zu beschleunigen, neue Geschäftsmodelle zu etablieren oder Prozesse im Unternehmen effizienter zu gestalten. Das Venture-Client-Modell ist eine vergleichsweise neue Form der Zusammenarbeit mit Startups, und erweist sich als effektiver und effizienter als andere Corporate Venturing Modelle. ‣ weiterlesen
Die digitale Transformation wird zur Schlüsselfrage für den Erfolg im Maschinen- und Anlagenbau. Welche Handlungsoptionen Unternehmen dabei haben, beleuchtet die Impuls-Stiftung des VDMA in ihrer neuen Kurzstudie 'Erfolgsfaktoren digitaler Geschäftsmodelle', die vom Institut FIR der RWTH Aachen erstellt wurde.‣ weiterlesen