Resiliente Fertigung mit künstlicher Intelligenz

Stets gerüstet für das Unerwartete

Der Schlüssel für resiliente Produktionssysteme ist es, auf unvorhergesehene Ereignisse reagieren zu können, bevor ein Schaden eintritt. Im Förderprojekt Spaicer entsteht gerade ein solcher Ansatz für Resilienzmanagement auf Basis von künstlicher Intelligenz und Industrie 4.0-Standards.

(Bild: ©xreflex/Stock.adobe.com)

Der Begriff der Resilienz ist in den letzten Jahren immer öfter zu hören. Auslöser dafür sind neben häufiger werdenden Natur- und Umweltkatastrophen auch die diversen politischen und wirtschaftlichen Krisen wie die globale Finanz- und Euro-Staatsschuldenkrise, der Brexit oder jüngst die Corona-Epidemie. Wenn Produktionsprozesse und Geschäftsmodelle von Unternehmen in solchen Krisen widerstandfähig bleiben, bezeichnet man sie als resilient. In der Materialwissenschaft wird der Begriff Resilienz beispielsweise für die Eigenschaft eines Materials verwendet, nach einer Deformation rasch wieder zurück in die alte Form zu finden. Ähnlich wird das Wort auch in der Ökologie verwendet: Resiliente Systeme sind in der Lage, sich trotz interner oder externer Störungen eigenständig stabil zu halten. Industrie 4.0- und KI-Technologien eröffnen neue Möglichkeiten, um ein vergleichbare Resilienz in Produktionsunternehmen zu stärken. Denn durch die Vernetzung von Komponenten und Systemen entlang einer Wertschöpfungskette sind zusätzliche Daten verfügbar, die mithilfe von KI-Methoden auf Muster durchsucht werden können, die auf Störungen hindeuten. Auf dieser Basis und den entsprechenden abgeleiteten Eintrittswahrscheinlichkeiten lassen sich früh alternative Handlungsstrategien entwickeln und umsetzen. Dabei können Beeinträchtigungen auf sehr unterschiedlichen Ebenen auftreten. Unternehmen, die industrielle Feinschneidtechnologien einsetzen, müssen sich beispielsweise mit Störungen auf der Maschinen- bzw. Mikroebene beschäftigen. So führen Schwankungen im Werkstoff zu erhöhtem Werkzeugverschleiß. Wird dies nicht rechtzeitig erkannt, kann es zum Werkzeugbruch führen. Um beschädigte Teile auszutauschen, muss die Maschine angehalten werden. Mitunter können dabei Kosten von mehreren Hunderttausend Euro pro Stunde anfallen. Resilienz bedeutet in diesem Fall, den Werkzeugverschleiß fortlaufend und derart zuverlässig zu prognostizieren, dass die Instandhaltung zeitlich sinnvoll geplant und kostengünstig erfolgen kann. Das ist nur einer der Anwendungsfälle des Projekts Spaicer. Ziel des Projekts ist es, produzierenden Unternehmen – insbesondere aus dem Mittelstand – zu solcher Resilienz auf Basis KI-basierter Systeme zu verhelfen.

Resilienz-Services ohne Programmierkenntnisse

Wirtschaftliche Krisen, Engpässe bei Rohstofflieferungen oder auch Pandemien betreffen zwar meist ganze Branchen oder Volkswirtschaften, dennoch ist Resilienz als Eigenschaft immer auch von den Voraussetzungen eines Unternehmens abhängig. Neben den allgemeinen Störpotenzialen und Trends im Markt muss immer auch das Unternehmen und sein Netzwerk betrachtet werden. Mit standardisierten Tools ist das kaum möglich. Benötigt werden daher modulare und leicht adaptierbare Werkzeuge, die auf die Bedürfnisse und Anforderungen eines Unternehmens zugeschnitten werden können. Im Projekt Spaicer werden daher sogenannte Smarte Resilienz-Services (SRS) entwickelt. Sie eignen sich einerseits für den Einsatz in den unterschiedlichen Unternehmen und erledigen dort ähnliche Aufgaben, erlauben aber auch, Anpassungen gemäß individuellen Abläufen und Anforderungen vorzunehmen – ohne Programmierkenntnisse von den Unternehmen selbst. Dies sollte insbesondere für mittelständische produzierende Unternehmen interessant sein, für die der Einsatz von KI-Technologien aufgrund fehlenden Wissens nicht selten eine Herausforderung darstellt. Grundlage der SRS sind sogenannte technische Agenten. Diese sind in der Lage, weitgehend selbstständig und zugleich mit Blick auf das Gesamtsystem zu agieren. Spaicer entwickelt Agenten, die sowohl unterschiedliche Produktionsdaten aus Steuerungen, MES- und ERP-Software, als auch unternehmensexterne Datenquellen wie Wettervorhersagen, Rohstoffpreise oder Marktprognosen einbeziehen. Die Datenanalyse erfolgt durch eine Kombination von Methoden des Maschinellen Lernens und formalen Planungs- und Interferenzmethoden. Angeboten und zur Verfügung gestellt werden die SRS über offene Plattformen. Spaicer plant dafür eine hybride Plattformarchitektur aus Cloud- und Edge-Computing-Elementen einzurichten. Damit geht das Projekt auch auf die Bedenken vieler Unternehmen ein, die generell keine unternehmensinternen Daten an ein Cloud-System übermitteln möchten. Mit dem hybriden Angebot können Produktionsdaten sowohl direkt auf den Produktionsmaschinen als auch in der Cloud oder in Kombination beider Ansätze verarbeitet werden. Die Anwender entscheiden selbst, welche Lösung sie wählen.

Hebel in einer Industrie 4.0

Durch Industrie 4.0-Technologie lässt sich die Produktion entlang der gesamten Wertschöpfungskette vernetzen. Mit den damit verbundenen Effizienzgewinnen gehen auch höhere Risiken einher, da die Glieder der Kette nun öfter als zuvor nahtlos ineinandergreifen müssen. All diese Komponenten kontinuierlich zu analysieren, übersteigt die Möglichkeiten vieler Unternehmen. Daher sollte ein Resilienzmanagement auf automatisierte Systeme zugreifen können. Deren Aufgabe besteht darin, relevante Daten zusammenzutragen und zu analysieren, um Entscheidern auf dieser Grundlage Handlungsoptionen aufzuzeigen. Im Projekt wird das Zusammenspiel zwischen einem KI-basierten Resilienzmanagement und der Unternehmensplanung in mehreren Praxisbeispielen erprobt. Unter anderem sollen für einen Automobilzulieferer die Auswirkungen politischer Konflikte auf dessen Produktion antizipiert werden. Da dieser Just-in-Time-Zulieferungen von Teilen und sehr geringe Lagerbestände nutzt, ist er sehr anfällig für Schwankungen bei den benötigten Rohstoffen. Durch die Analyse der Börsen- und Rohstoffpreisentwicklung sowie weiterer externer Datenquellen sollen signifikante Störungen früh identifiziert und Handlungsoptionen, wie etwa die Erweiterung des Lieferantennetzwerkes oder die Anpassung des Auftragsvolumens, aufgezeigt werden. n Impulse aus 16 Leuchttürmen

Das Projekt Spaicer wird im Rahmen des KI-Innovationswettbewerbs vom Bundesministerium für Wirtschaft und Energie (BMWi) gefördert. Das BMWi fördert mit dem Innovationswettbewerb die Entwicklung KI-basierter Plattformkonzepte. Die 16 ausgewählten Technologieprojekte sollen als Leuchttürme Impulse für den Einsatz von KI in wichtigen Sektoren der deutschen Wirtschaft setzen. www.ki-innovationen.de

Das könnte Sie auch interessieren

Der Security-Spezialist DriveLock hat gemeinsam mit den Kooperationspartnern Computerwoche und CIO die Studie 'Cyber Security 2020' veröffentlicht. Darin widmen sich die Experten Herausforderungen und Strategien beim Schutz von IT-Systemen.‣ weiterlesen

Anzeige

Im November starten die IT&Production-Fachmedien eine eigene Webinarserie - die IT&Production TechTalks. Jedes Webinar bietet drei Vorträge zu einem Schwerpunktthema - u.a. MES/MOM (24.November), Robotic Process Automation (26. November), und Industrial Internet of Things (2. Dezember) und Künstliche Intelligenz (3. Dezember). Zur kostenfreien Anmeldung gelangen Sie hier.‣ weiterlesen

Anzeige

Exklusiv für Abonnenten

Nicht nur die aktuelle Corona-Krise stellt produzierende Unternehmen vor große Herausforderungen, auch das Thema Nachhaltigkeit wird immer wichtiger. Um dieser gerecht zu werden, hat das Werkzeugmaschinenlabor WZL der RWTH Aachen University den Lean Innovation-Ansatz hin zu einem Sustainable-Innovation-Ansatz erweitert.‣ weiterlesen

In einer weltweiten Untersuchung der Wirtschaftsprüfungsgesellschaft PWC geben 96 Prozent der mehr als 3.000 befragten Unternehmen an, ihre Cyber-Sicherheitsstrategie aufgrund von Covid-19 geändert zu haben - in Deutschland waren es sogar 98 Prozent. Zudem geben 51 Prozent der deutschen Unternehmen an, ihre Cyberbudgets für 2021 um mindestens 5 Prozent erhöhen zu wollen - obwohl 80 Prozent Umsatzeinbußen von bis zu 50 Prozent für 2020 erwarten.‣ weiterlesen

Die Deutschen stehen dem Einsatz von künstlicher Intelligenz im industriellen Umfeld mehrheitlich positiv gegenüber. In anderen Bereichen fällt die Zustimmung laut einer Bosch-Studie jedoch geringer aus.‣ weiterlesen

Wie lässt sich die Auftragsabwicklung eines Automobilherstellers optimieren? Im Projekt 'KI-basierte Produktionsplanung und -steuerung' entwickeln IPA-Forscher zusammen mit der Porsche AG smarte Lösungen für die Fertigung der Zukunft. Diese helfen schneller auf Kundenwünsche zu reagieren, Ressourcen und Zeit zu sparen.‣ weiterlesen