Anwendungsfälle für Edge und Cloud

Nicht Gegner, sondern Partner

Die Cloud setzt sich durch – Public, Private, Hybrid und Multi Cloud gehören mittlerweile zum Unternehmensalltag. Besonders in der Industrie kommt Edge Computing als Betriebsform hinzu. Mit den richtigen Anwendungsszenarien können Edge und Cloud sinnvoll kombiniert werden. Die Auswahl des Dienstanbieters ist dabei auch eine Frage des Preis-Leistungsverhältnisses.

(Bild: ©Jacky/stock.adobe.com)

Technologien wie Big Data, künstliche Intelligenz (KI) und das Industrial Internet of Things (IIoT) verändern sowohl die Informationstechnologie (IT) als auch die Operational Technology (OT) im ‘Maschinenraum’ von Unternehmen. Vor allem in Produktion und Fertigung gilt es, Anwendungslandschaften zukunftsfähig zu machen und auf die Anforderungen von Industrie 4.0 umzustellen. An dieser Stelle kommt Edge Computing ins Spiel.

Die Sache mit der Latenz

Ob eine Anwendung vor Ort an der Edge realisiert werden sollte, hängt in erster Linie von den Anforderungen an die Latenz ab. Ist etwa die Strecke zwischen Fabrikhalle und zentraler Cloud zu lang und verursacht eine hohe Latenz, verlangsamen sich die Antwortzeiten. Diese Verzögerungen können bei Anwendungen, die auf Echtzeitverarbeitung angewiesen sind, zu Problemem führen und in Fertigungsprozessen die Produktivität von Maschinen und Anlagen senken. Daher empfiehlt es sich, bei der Steuerung von Echtzeitprozessen im IIoT-Umfeld auf Edge Computing zu setzen: Vor Ort implementierte Applikationen mit minimaler Latenz steuern Maschinen und Anlagen.

Hinzu kommen gewichtige rechtliche Gründe für den Einsatz von Edge-Devices: In vielen Unternehmen dürfen die verarbeiteten Daten aufgrund von Compliance-Bestimmungen wie der DSGVO das Betriebsgelände gar nicht erst verlassen. Gerade bei innovativen Industriebetrieben und ‘Hidden Champions’ hierzulande steckt häufig das gesamte Knowhow und der Innovationsvorsprung in den Daten. Diese in einer Public Cloud zu verarbeiten und zu speichern birgt immer das Restrisiko, dass Geschäftsgeheimnisse in falsche Hände geraten. Auch in diesem Fall ist Edge Computing – in Verbindung mit einer zentralen Private Cloud auf dem Betriebsgelände – ein Lösung.

Cloud und Edge arbeiten zusammen

Edge und Cloud wirken bei der Datenverarbeitung zusammen. Alle Edge-Daten, die nicht für die Echtzeitsteuerung benötigt werden, lassen sich über das Netzwerk an einen zentralen Cloud-Server senden, um dort analysiert und gespeichert zu werden. Vor Ort werden die Daten in der Regel temporär gespeichert und vorverarbeitet, während die entsprechenden Modelle in der zentralen Cloud abgelegt sind. So schickt etwa eine Anwendung zur Bilderkennung nicht das komplette Bild an die Cloud, sondern nur die von ihr gemäß der vorgegebenen Filter erkannten Muster. Im zentralen Rechenzentrum wiederum stehen Server mit leistungsstarken Grafikprozessoren (GPU) zur Verfügung. Diese sorgen in Verbindung mit KI-Verfahren wie Maschinellem Lernen dafür, dass die Bilderkennung für das Edge Computing immer weiter trainiert und verbessert werden kann.

Meldet eine Applikation vor Ort etwa Anomalien bei der Erkennung oder muss sie neu hinzugekommende Bauteile im Produktionsprozess unterscheiden, ist ein erneutes Training erforderlich. Danach wird ein Update der ML-Modelle an die Edge-Devices geschickt. Dafür kommen in vielen Unternehmen Container-Lösungen wie Docker zum Einsatz, die die Anwendung samt Laufzeitumgebung enthalten und zentrale Steuerungswerkzeuge wie Kubernetes. Damit lassen sich Anwendungspakete nach Bedarf an verschiedene Edges verteilen. So entsteht eine Art Kreislaufsystem, das auf kontinuierlichem Lernen beruht: In der zentralen Cloud wird die Anwendung trainiert, am Netzwerkrand (Edge) führt sie ihre Arbeit aus – bis wieder ein Update in der Cloud erforderlich ist, wo sie angepasst, neu berechnet und per Kubernetes deployed wird. Arbeitet z.B. ein Dutzend Industrieroboter an verschiedenen Standorten eines Unternehmens mit einer zentral in der Cloud entwickelten Edge-Anwendung, lässt sich diese in ebenso viele Container verpacken und in den jeweiligen Fabrikhallen zum Einsatz bringen.

Bei der Entwicklung ihrer Edge-Apps können Unternehmen IaaS (Infrastructure as a Service)- und PaaS (Plattform as a Service)-Ressourcen in der Private Cloud verwenden. Besonders nützlich ist dabei ein hybrides Szenario, wenn vorübergehend sehr hohe Rechenkapazitäten benötigt werden. Diese zusätzlichen Prozessorkerne lassen sich mittels Cloud Bursting kurzfristig aus der Public Cloud beziehen und nach getaner Arbeit wieder abschalten, ohne dass Gefahr für die verarbeiteten Daten besteht. Diese werden weiter in der Private Cloud gespeichert

Das könnte Sie auch interessieren

Exklusiv für Abonnenten

Vor fast einem Jahrzehnt prägte das deutsche Bundesministerium für Bildung und Forschung den Begriff Industrie 4.0. Der Ausdruck beschreibt einen weiteren Sprung in der Automatisierungstechnik für die Produktion. Welche Trends dabei das Potenzial haben Produktionsumgebungen zu verändern zeigt Cliff Ortmeyer, Global Head of Technical Marketing bei Farnell.‣ weiterlesen

Anzeige

Eine Senseye-Umfrage unter großen Industrieunternehmen hat ergeben, dass große Werke 27 Stunden pro Monat aufgrund von Machinenausfällen verlieren und jede Stunde ungeplanten Stillstandes rund 532.000US$ (ca. 450.000€) kostet. Der Verlust wird auf 3,3 Millionen Produktionsstunden geschätzt. Das entspricht 864Mrd.US$ (ca. 730Mrd.€) pro Jahr bei den Fortune Global 500 Industrieunternehmen.‣ weiterlesen

Anzeige

Exklusiv für Abonnenten

Der Zugang zu Datenanalysen, digitalen Geschäftsmodellen, Künstlicher Intelligenz und Co gestaltet sich für kleine und mittlere Unternehmen oftmals noch schwierig. Es mangelt an internem Knowhow, finanziellen Möglichkeiten oder schlicht der richtigen Idee. Spezielle Weiterbildungsprogramme und externe Experten können bei diesem Problem unterstützen.‣ weiterlesen

Anzeige

Roboter sind in großen Fabriken längst Realität. In wenigen Jahren können sie, unterstützt durch künstliche Intelligenz (KI), auch in kleinen Unternehmen die Beschäftigten bei der Montage unterstützen. Die Voraussetzung dafür ist, dass die Zusammenarbeit mit den lernenden Maschinen sicher ist und dem Menschen motivierende, selbstbestimmte Tätigkeiten erhalten bleiben. In einem fiktiven Anwendungsszenario wirft die Plattform Lernende Systeme einen Blick in die Zukunft der Industriearbeit.‣ weiterlesen

Die Mehrheit der Unternehmen in Deutschland hält Blockchain laut einer Bitkom-Studie für eine wichtige Zukunftstechnologie. Jedoch haben nur 2 Prozent die Technologie in Nutzung bzw. Pilotprojekte gestartet. Dabei sieht die Hälfte Deutschland international als Blockchain-Nachzügler oder sogar abgeschlagen.‣ weiterlesen

Eine leistungsfähigere IT-Infrastruktur und staatliche Förderangebote könnten mehr Unternehmen dazu bewegen, KI-Anwendungen einzusetzen, so eine Studie des ZEW Mannheim im Auftrag des Bundeswirtschaftsministeriums (BMWi). Für den KI-Standort Deutschland sehen die befragten Unternehmen im Ländervergleich allerdings Verbesserungspotenzial.‣ weiterlesen