Vorteile trotz hoher Investitionen möglich

Ist 5G bereit für die Fertigungsindustrie?

In der jüngeren Vergangenheit machte das Thema 5G zahlreiche Schlagzeilen – leider oft aus den falschen Gründen. Doch abseits der medialen Kontroverse sollte man im Augen behalten, dass die Technologie über das Potenzial verfügt, die Arbeitsweise von Herstellern grundlegend zu verändern. Jonathan Wilkins, Direktor bei EU Automation, erklärt, wie 5G für die Fertigungsbranche von Nutzen sein kann.

(Bild: ©Kzenon/shutterstock.com)

Skandale, wie etwa um Dieselabgase oder Verletzungen der Datensicherheit, sind üblicherweise nicht gut für den Technologiesektor. Sie können einer Technologie den Todesstoß versetzen, noch bevor sie sich auf dem Markt etablieren konnte. Anders als viele aktuelle Schlagzeilen vermuten lassen, hat 5G für den Fertigungssektor ein immenses positives Potenzial und könnte eine neue Ära der technologischen Innovation einläuten. Während die vorhergehenden Mobilfunkstandards 3G und 4G schrittweise Verbesserungen in Bezug auf Geschwindigkeit und Bandbreite boten, kommt mit 5G die erste zellulär aufgebaute Drahtlos-Plattform, die tatsächlich die verlässliche Integration mit Machine-to-Machine- (M2M) und industriellen IoT-Systemen ermöglicht. Dies erfolgt auf drei unterschiedliche Arten gleichzeitig. Erstens mit erweitertem mobilem Breitband (enhanced mobile broadband, eMBB); 5G bietet Spitzen-Datenübertragungsraten von 10Gbps und kann bis zu 10.000 Mal mehr Traffic unterstützen als seine Vorgängerstandards. Zweitens bietet es besonders zuverlässige Verbindungen mit geringer Latenz (Ultra Reliable Low Latency Communications, URLLC). Es hat also eine Funklatenz von weniger als 1ms und bietet mehr als 99,9 Prozent Verfügbarkeit, wodurch es sich ideal für den Einsatz in der Industrie eignet, wo der unterbrechungsfreie Betrieb von zentraler Bedeutung ist. Drittens bietet 5G die sogenannte Massive Machine-Type Communication (mMTC), mit der eine Anschlussdichte von einer Million Geräten pro Quadratkilometer möglich ist. Damit lässt sich auch die Kommunikation zwischen Maschinen (M2M) extrem kostengünstig umsetzen und Geräte können im Batteriebetrieb bis zu 10 Jahre einsatzfähig bleiben, was großartige Einsatzgebiete für batteriebetriebene Geräte mit niedrigem Stromverbrauch erschließt.

Nutzen für die Industrie

Was bedeutet dies nun für die Industrie? 5G wird nicht nur drahtlosen Echtzeit-Sensornetzwerken sowie Standort- und Asset-Tracking Tür und Tor öffnen, es wird darüber hinaus Werksleitern in intelligenten Fabriken ermöglichen, nahtlos mit einer Flotte fahrerloser Transportfahrzeuge (FTF) zu kommunizieren, ohne sich dabei um Netzwerkausfälle sorgen zu müssen. Außerdem können Hersteller, die bis dato bezüglich der Übernahme von Technologien der erweiterten oder virtuellen Realität skeptisch waren, nun das volle Potenzial dieser Technologien für Echtzeit-Simulationen und prädiktive Instandhaltung nutzen.

In der industriellen Automatisierung sind 5G-Netzwerke in der Lage, Kabelverbindungen selbst in den anspruchsvollsten Anwendungen, beispielsweise in der Bewegungssteuerung und in Sichtsystemen mit hohem Durchsatz, zu ersetzen. Ethernet-Protokolle werden nach wie vor von Organisationen wie 3GPP und IEEE standardisiert, um zeitkritische Netzwerke (time sensitive networks, TSNs) in die 5G-Architektur zu integrieren, wodurch 5G ebenso wie seine Ethernet-Pendants geringe Latenz und hohe Verfügbarkeit erreichen wird. Der Wechsel zum 5G-Standard erfordert jedoch bedeutende Investitionen, um die Infrastruktur aufzurüsten. Da 5G in weniger stark genutzten, höheren Frequenzbereichen um etwa 6GHz – oder mit Wellenlängen im Millimeterbereich auf neuen Funkfrequenzen zwischen 30 bis 300GHz – arbeitet, kann dieser Standard leicht durch Hindernisse blockiert oder durch Faktoren wie Regen oder selbst Feuchtigkeit absorbiert werden. Dies wird die Umsetzung kleiner, zellulär aufgebauter Netzwerke mit kleineren, räumlich näher zusammenliegenden Antennen erforderlich machen. Daher stellt sich die Frage, ob der 5G-Standard wirklich die Investitionen in technologische Upgrades und Ausrüstung wert ist.

Ausschuss vermeiden

An dieser Stelle lohnt sich ein Blick auf ein Experiment des Unternehmens Ericsson, einem der weltweit größten Anbieter für 5G-Ausrüstung. Das Unternehmen führte gemeinsam mit dem Fraunhofer-Institut für Produktionstechnologie in Deutschland einen Test in einer Anlage für die Herstellung so genannter Blisks (bladed disk, beschaufelte Scheiben) für Flugzeugturbinen durch. Diese großen Komponenten werden in einem bis zu 20 Stunden langen Fräsverfahren hergestellt, bei dem das Metall extrem präzise zugeschnitten werden muss. Die Fehlerrate bei diesem Verfahren ist mit bis zu 25 Prozent sehr hoch und durch Abweichungen bedingt, die aufgrund kleinster Vibrationen des Werkstücks entstehen. Allerdings werden Fehler meist erst gegen Ende des Verfahrens entdeckt. Als Ericsson im Rahmen des Tests jedoch 5G-Sensoren an seinen Maschinen installierte, konnte das Unternehmen die Fehlerrate auf 15 Prozent senken. Es war möglich, Daten in weniger als einer Millisekunde zu übermitteln, somit wurden Fehler in einem Ausmaß aufgespürt und verhindert, der beim Einsatz anderer Methoden der drahtlosen Kommunikation nicht erreicht werden könnte. “Bei einer Latenzzeit von einer Millisekunden sieht man, ob irgendwo im Verfahren eine Abweichung auftritt, noch bevor das Werkzeug tatsächlich auf das Werkstück trifft, und der Bediener kann die Maschine stoppen, bevor der Fehler passiert”, erklärte ? sa Tamsons, leitender Vizepräsident bei Ericsson. Die Reduktion der Fehlerrate von 25 auf 15 Prozent mithilfe von 5G senkte die Gesamt-Produktionskosten pro Blisk um 3.600?. Das Ergebnis dieses Tests ist natürlich beeindruckend, doch es sollte nicht vergessen werden, dass nicht alle Effizienz-Probleme in unseren Herstellungsanlagen durch 5G alleine zu lösen sind. Hersteller müssen bereit sein, in die Aufrüstung von Infrastruktur zu investieren – denn frühe Nutzer werden bei der Nachrüstung bestehender Anlagen und Netzwerke mit 5G-Komponenten im Zusammenhang mit technischer Unterstützung vor Herausforderungen stehen. Dies wird nicht nur eine intensive Auseinandersetzung mit dem Thema Obsoleszenzmanagement erfordern, sondern auch Anstrengungen, um sicherzustellen, dass Anlagen weiterhin Produktivitätszuwächse ermöglichen, ohne dass dafür die ganze Fabrik und die gesamte Ausrüstung überholt werden müssen.

Das könnte Sie auch interessieren

Universität Bielefeld und das Fraunhofer-Institut in Lemgo bieten künftig Unterstützung für den Mittelstand. Im Rahmen des Projekts Explore bauen die Partner eine Plattform auf, die Simulations- und Rendering-Plattformen mit Automatisierungstechnologien verbindet.‣ weiterlesen

Der Schritt hin zur Smart Factory ist oft mit Herausforderungen verbunden. Modulare Robotik tritt an, diesen Weg zu ebnen. Welchen Nutzen ein solches Baukasten-System stiften kann, beschreibt RobCo-CEO Roman Hölzl im folgenden Beitrag.‣ weiterlesen

Ist KI nur ein Hype oder eine echte Zukunftstechnologie? In Deutschland gibt es dazu sowohl in der Wirtschaft als auch in der Bevölkerung eine klare Meinung.‣ weiterlesen

Die deutsche Wirtschaft hat ein neues Allzeithoch an Industrierobotern erreicht. Und auch weltweit verzeichnet die IFR mit 4.281.585 Einheiten einen Rekordbestand.‣ weiterlesen

Die Umfrageteilnehmer der Manufacturing Vision Study stimmen zu, dass der digitale Wandel eine strategische Priorität für sie ist. Jedoch äußern die Befragten auch Bedenken, nicht mit dem Tempo technologischer Innovation Schritthalten zu können.‣ weiterlesen

Für Konsumenten wird es immer wichtiger, sich für ein nachhaltiges und transparentes Produkt zu entscheiden. Hierbei soll der Digitale Produktpass (DPP) helfen. Dieser dient als eine Art Steckbrief des gekauften Produkts. Der Spitzencluster it’s OWL beschäftigt sich in gleich zwei Projekten mit dem Thema.‣ weiterlesen

Edge AI revolutioniert die Art und Weise, wie Daten verarbeitet werden - direkt am Ort des Geschehens, ohne Verzögerungen und ohne den Umweg über entfernte Server. Doch welche Herausforderungen und Möglichkeiten bringt diese Technologie wirklich mit sich? Compmall klärt auf.‣ weiterlesen

Der Bedarf an sehr kleinen, zugleich sehr komplexen Komponenten steigt in der Unterhaltungselektronik und bei MEMS (mikroelektromechanische Systeme), in Medizintechnik, Biowissenschaften und in vielen anderen Bereichen. Doch die Herstellung kleinster Bauteile war bisher mit langen Vorlaufzeiten und Investitionen in Formen und Werkzeuge verbunden. Können additive Fertigungstechniken einen schnelleren Weg zur Mikroproduktion bieten?‣ weiterlesen

Die Eclipse Foundation beschreibt in einer Studie, wie Open Source die Entwicklung sicherer, softwarebasierter Fahrzeuge vorantreibt. Demnach erwartet die Mehrheit der Befragten Innovationssteigerungen durch den der Open-Source-Ansatz.‣ weiterlesen

Befragte in vier europäischen Nationen sind sich einig: Automation ist vielversprechend für die europäische Industrie. 60 Prozent der befragten Unternehmen glaubt an eine vollautomatisierte Fertigung in fünf Jahren, über zwei Drittel (68 Prozent) sehen Automatisierungssysteme als essenziell, um wettbewerbsfähig zu bleiben. Das ergab eine Umfrage von Reichelt Elektronik zum Stand und den Zukunftsaussichten von Automatisierungstechnik, KI und IoT im herstellenden Gewerbe. ‣ weiterlesen

Trend Micro fasst im aktuellen Lagebericht die wichtigsten IT-Sicherheitstrends im ersten Halbjahr 2024 zusammen. Das Bedrohungsniveau bei Ransomware und Phishing bleibt hoch. Cyberkriminelle haben aus den jüngsten Erfolgen der Polizei gelernt und passen ihre Taktiken an, indem sie etwa KI und globale Ereignisse für ihre Zwecke nutzen.‣ weiterlesen