Alle Beschäftigten in der Industrie sollen zukünftig in der Lage sein, KI-Tools zu bedienen, neue Prüfanwendungen einzurichten und zu warten – ohne Expertenwissen. Das ist das Ziel des Forschungsprojekts ‘DeKIOps’. Unter Leitung der Arbeitsgruppe für Supply Chain Services des Fraunhofer-Instituts für Integrierte Schaltungen IIS wollen Senswork, Inovex und Eresult bis Ende 2025 Leitlinien und zwei Demonstratoren in industriellen Anwendungen entwickeln.
Bild: ©MangKangMangMee/stock.adobe.com
Im Forschungsprojekt ‘DeKiOps’ – Demokratisierung von KI mit verständlichem und einfach zugänglichem Machine Learning Operations (MLOps) – sollen Entwicklungsleitlinien für verständlich bedien- und wartbare Machine Learning (ML)-Systeme erarbeitet werden, um Endanwendern ohne KI-Expertise die operative Nutzung dieser ML-Systeme zu ermöglichen. Damit will das Projekt auch dem Fachkräftemangel entgegenwirken: Denn es ist das übergeordnete Ziel, ML-Systeme zu demokratisieren und so einen niederschwelligen Zugang zu ML-Lösungen für Beschäftigte zu schaffen. Im Fokus stehen ML-Systeme in industriellen Fertigungen mit qualitätskritischen Anforderungen, etwa bei Zulieferteilen für die Automobilindustrie.
Um ML-Systeme allgemein zugänglich zu machen, werden im Projekt zunächst Entwicklungsleitlinien erarbeitet. Die Arbeitsgruppe für Supply Chain Services des Fraunhofer IIS greift dazu auf Lösungsvorschläge aus vorherigen Projekten zurück. Diese MLOps-(Teil-)Lösungen werden auf ihre Funktionalitäten hin und unter Berücksichtigung der gestellten Anforderungen untersucht und gegenübergestellt. Im Vorfeld ist es daher wichtig, die menschlichen Anforderungen an den Umgang mit ML-Systemen in Betrieb, Wartung und Instandhaltung (MLOps) zu erfassen. Vorhandenes Branchenwissen wird von der Arbeitsgruppe bei der Übersetzung der Anforderungen in technische Maßnahmen miteinbezogen. Anschließend gilt es, fehlende MLOps-Module zu integrieren und die ML-(Blackbox-) Ergebnisse in Formate zu übersetzen, die von den Endanwendern ohne dezidierten ML-Hintergrund leicht verstanden werden.
Der Praxistest der so entwickelten Leitlinien erfolgt ebenfalls im Forschungsprojekt, und zwar in zwei verschiedenen Anwendungsfällen. Der erste Anwendungsfall betrachtet die bildgebende Qualitätssicherung: Im ersten Fall wird eine eine visuelle, automatisierte und KI-basierte Qualitätssicherung (Computer Vision) entwickelt. Senswork verantwortet die Entwicklung des Vision AI Systems, das sich künftig ohne KI-Fachwissen bedienen und warten lassen soll. Parallel einen zweiten Anwendungsfall, der ebenfalls die Qualitätssicherung betrachtet und den Fokus auf die prädiktive Instandhaltung legt. Der Use Case wird von Inovex untersucht. Die Lösungen werden von den Endnutzern der Anwendungspartner bewertet. Die Evaluation erfolgt durch Eresult.
Patentanmeldungen im Bereich der additiven Fertigung (3D-Druck) sind zwischen 2013 und 2020 mit einer durchschnittlichen jährlichen Rate von 26,3 Prozent gestiegen. Wie das Europäische Patentamt weiter berichtet, wurden seit 2001 weltweit mehr als 50.000 bedeutende Erfindungen im Zusammenhang mit 3D-Druck-Technologien als internationale Patentfamilien (IPF) veröffentlicht. ‣ weiterlesen
Der Anteil der Unternehmen, die KI einsetzen, ist binnen eines Jahres von 9 auf 15 Prozent gestiegen. Das ist das Ergebnis einer Bitkom-Befragung unter 605 Unternehmen. Zwei Drittel von ihnen sehen KI als wichtigste Zukunftstechnologie.‣ weiterlesen
Derzeit erleben wir multiple Krisen - neben zunehmenden geopolitischen Spannungen entwickelt sich die Erderwärmung zu einer immer größeren Herausforderung. Das Umweltbundesamt rechnet bis Ende des 21. Jahrhunderts mit einer Erhöhung der mittleren Erdtemperatur um bis zu 5,7 Grad Celsius, sofern nicht kurzfristig eine massive Reduktion der CO2-Emissionen erfolgt. Wie der CO2-Fußabdruck dabei unterstützen kann, beschreibt ein Beitrag des Beratungsunternehmens Aflexio.‣ weiterlesen
Nachhaltigkeit und Wirtschaftlichkeit für den Industriesektor Hand in Hand? Dies kann Realität werden. Das kürzlich abgeschlossene Forschungsprojekt 'Climate Solution for Industries' (CS4I) unter Beteiligung des Fraunhofer IPA setzt bereits bei Investitionsentscheidungen an und widmet sich dem 'True Carbon Footprint'.‣ weiterlesen
Viele Anlagen und Rechner in der Industrie sind smart - so viel ist klar. Sie können sehen, hören und sprechen. Dass sie technisch nun auch riechen können, ist deshalb nicht verwunderlich. Technologien wie die 'AI Nose' sollen die Konsumgüterindustrie noch intelligenter machen und Unternehmen dabei helfen, Wettbewerbsvorteile zu sichern und auszubauen.‣ weiterlesen
Unternehmen reden viel über die möglichen Auswirkungen von KI- und ML-Anwendungen, aber oft wenig über deren Qualität. Und die hängt in erster Linie vom Dateninput ab. Der Datenspezialist Aparavi erklärt, wieso ein hochwertiges Dateninventar die Voraussetzung für eine sinn- und wertvolle KI- oder ML-Lösung ist.‣ weiterlesen
Viele Industrieunternehmen stoßen mit Ethernet und WLAN an ihre Grenzen. Denn für die Umsetzung von IIoT-Lösungen mit vernetzten Sensoren, Maschinen und anderen Geräten brauchen sie 5G-Netze. Doch noch zögern vor allem kleine und mittlere Unternehmen, in 5G zu investieren.‣ weiterlesen
Kontinuierliche Entwicklungen und zukunftsweisende Technologien treiben den Fortschritt der industriellen Kommunikation voran. Zu den Schlüsseltechnologien zählt Time-Sensitive Networking (TSN). John Browett, General Manager der CC-Link Partner Association (CLPA), erläutert, wie TSN die Voraussetzungen für den nächsten Schritt im digitalen Zeitalter schafft.‣ weiterlesen
Das Bundeskriminalamt zählte im vergangenen Jahr 136.865 Fälle von Cyberkriminalität und damit mehr Taten als im Jahr zuvor. Für deutsche Unternehmen beliefen sich die Schäden nach Angaben des Bitkom auf mehr als 203Mrd.€.‣ weiterlesen
Fast jedes vierte deutsche Unternehmen (24 Prozent) sieht Deutschland in der Forschung zu künstlicher Intelligenz weltweit in der Spitzengruppe. Das übersetzt sich bislang allerdings noch nicht in die Wirtschaft.‣ weiterlesen
Die Kapazitäten zur Halbleiterfertigung werden weltweit ausgebaut. Die Produktionsprozesse in dieser Branche sind allerdings aufwendig und umfassen mehr als 1.000 verschiedene Schritte. Entsprechend komplex und sensibel ist der Aufbau von Produktionskapazitäten.‣ weiterlesen