Herausforderungen bei der KI-Implementierung

Künstliche Intelligenz: erste Schritte gehen

Aktuell befindet sich die Branche mitten in der Transformation von KI in Fertigungsprozessen und es gibt viele Fallstudien, die zeigen, wie KI erfolgreich implementiert werden kann. Eine Erkenntnis ist, dass sich 90 Prozent aller Arbeiten in einem KI-Projekt nicht wirklich um KI selbst drehen, sondern um Hilfsprozesse, wie etwa die Bereinigung von Daten, die Organisation von Teams oder Umstrukturierungen.

(Bild: ©morganimation/stock.adobe.com)

Oft sind die Probleme auch nicht technischer Natur, sodass neben der technischen Machbarkeit auch die soziale Machbarkeit mit Hilfe von Soziologie, Psychologie, Verhaltensstudien usw. geprüft werden sollte. Entlang des Lebenszyklus sind dabei die wichtigsten Herausforderungen:

  • • Proof of Concept: Verfügbarkeit von qualitativ hochwertigen Daten
  • • Prototyp: Integration mehrerer Stakeholder (Fachexperten, Finanzen usw.) und deren Feedback/Erwartungen
  • • In-Use: Anpassung an Veränderungen

Herausforderungen bei der KI-Implementierung

Um ein Problem zu lösen, muss man zunächst wissen, was das eigentliche Problem ist. Auf lange Sicht ist der Lebenszyklus und das Instandhalten und Pflegen der KI-Modelle sicher das größte Problem. Allerdings kommen viele Anwender bereits bei der Implementierung an ihre Grenzen und verlieren so den Lebenszyklus schnell aus den Augen. Der nächste Schritt ist eben meist der schwierigste. Laut ARC-Untersuchungen befindet sich ein groß der Anwender im Early Adopter Mode, d.h. die meisten haben also entweder das Potenzial von KI bereits evaluiert, Prototypen entwickelt oder erste Anwendungen in Betrieb genommen. Was allerdings fehlt ist Best Practices für den Lebenszyklus. Bei einer ARC-Umfrage gaben 47 Prozent an, dass der Lebenszyklus tatsächlich der schwierigste Teil ist. Doch was macht alles rund um KI so herausfordernd?

  • • KI bringt IT und OT zusammen. Das bedeutet, dass man nicht nur KI-Spezialisten benötigt, sondern auch Menschen aus dem Werk.
  • • Es gibt viele Aufgaben, die vor der KI-Implementierung erledigt werden müssen. Dazu gehören die Festlegung von Zielen, die Analyse von Maschinen/Prozessen, die Datenerfassung, die Datenbereinigung, die Einrichtung der Netzwerkinfrastruktur, die Einbindung von Edge-Geräten auf die Steuerungsebene (einschließlich der erforderlichen Geräte- und Versionsverwaltung), die Einrichtung einer Cloud-Plattform und vieles mehr.
  • • KI betrifft oft mehr als nur eine Maschine, sodass auch entlang der Wertschöpfungskette, Standort und Firmenübergreifend optimiert werden muss. Neben den kulturellen Konflikten sind also auch verschiedene Geschäftsinteressen unter einen Hut zu bringen.

Besonders skeptische Firmen sehen oft die Gefahr, dass KI einfach die Komplexität verlagert. Es reduziert die Komplexität auf der einen Seite, erhöht sie aber auf der anderen Seite, sodass ich zwar weniger Arbeiter brauche, dafür aber mehr KI-Experten, Data Scientists und Software Ingenieure.

Lehren und Best Practices

Es gibt eine Reihe von Lehren, die man bei ARC in Gesprächen mit Anwendern und Anbietern von KI immer wieder gehört hat:

  • • Mangelnder Respekt und Wertschätzung gegenüber OT-Experten: Wenn sich KI-Experten arrogant verhalten und Produktionsmitarbeiter im Außendienst ignorieren, sind Projekte zum Scheitern verurteilt. Sprache und Arbeitsweise beider Gruppen sind sehr unterschiedlich. Wenn das Verhalten nicht offen ist, werden die Mitarbeiter in der Fertigung nicht zusammenarbeiten oder sogar aktiv ein Projekt sabotieren.
  • • Fehlen eines klaren Ziels: Sowohl KI-Experten als auch Mitarbeiter in der Fertigung haben ein gemeinsames Ziel: die Produktion am Laufen zu halten und das richtige Produkt zu den richtigen Kosten und in der richtigen Qualität herzustellen. Fehlt dieses große Ganze, ist es oft schwierig, die beiden Gruppen von IT- und OT-Experten zusammenzubringen.
  • • 90 Prozent des Aufwands dreht sich nicht um KI: Das Deployment kann scheitern, wenn ein Unternehmen nicht bereit ist, das KI-Projekt mit genügend Ressourcen rund um die eigentliche Kern-KI zu unterstützen, etwa um um Stakeholder zusammenzubringen. Dies muss im Vorfeld einkalkuliert werden.

Das könnte Sie auch interessieren

Die aktuelle Innovationserhebung des ZEW zeigt, dass die Ausgaben in diesem Segment 2024 einen neuen Höchststand erreicht haben. Der Dienstleistungssektor verzeichnet dabei größere Wachstumsraten als die Industrie.‣ weiterlesen

Die Eclipse Foundation unterstützt weltweit Entwickler und Organisationen im Bereich Open Source Software. Ende Oktober traf sich die Community in Mainz zur Konferenz Open Community Experience (OCX). Unser Redakteur Marco Steber (IT&Production/INDUSTRIE 4.0 & IIoT-MAGAZIN) war ebenfalls vor Ort und sprach mit Mike Milinkovich, Executive Director der Eclipse Foundation, über Möglichkeiten und Herausforderungen im Bereich Open Source Software - in der Industrie und auch darüber hinaus.‣ weiterlesen

Innovationsführerschaft und Wettbewerbsfähigkeit sind entscheidende Faktoren für den Erfolg eines Unternehmens. Die Kooperation mit Startups kann etablierte Unternehmen dabei unterstützen Innovationszyklen zu beschleunigen, neue Geschäftsmodelle zu etablieren oder Prozesse im Unternehmen effizienter zu gestalten. Das Venture-Client-Modell ist eine vergleichsweise neue Form der Zusammenarbeit mit Startups, und erweist sich als effektiver und effizienter als andere Corporate Venturing Modelle.‣ weiterlesen

Eine neue Studie des Capgemini Research Institute geht der Frage nach, wie es um Nachhaltigkeit bei der Nutzung generativer KI (GenAI) steht. Der Studie ‘Developing sustainable Gen AI’ zufolge hat GenAI erhebliche und zunehmende negative Aus­wirkungen auf die Umwelt.‣ weiterlesen

Ist die Industrie 4.0 eine Revolution? Aus Sicht des Fraunhofer Instituts für System - und Innovationsforschnung lautet die Antwort: nein. Die Forschenden kommen in ihrer Veröffentlichung zu dem Schluss, dass sich eher von einer Evolution sprechen lasse.‣ weiterlesen

Laut einer repräsentativen Umfrage des Bitkom nimmt die digitale Abhängigkeit der deutschen Wirtschaft zu. Mit Blick auf die USA und China stellt dies die Unternehmen vor Herausforderungen.‣ weiterlesen