Forschungsprojekt Palim

Machine Learning für die hochautomatisierte Fertigung

Der Automobilzulieferer Valeo hat mit dem Fraunhofer KI-Spin-off Plus10 und der Technischen Hochschule Ingolstadt ein Forschungs- und Entwicklungsprojekt gestartet. Ziel des Projekts Palim (Performance-Accelerated Learning for Intelligent Manufacturing) ist es, hochautomatisierter Fertigungslinien mithilfe von Machine-Learning-Algorithmen effizienter zu machen.

(Bild: Valeo GmbH)

Beim Kick-off Meeting zum Projekt Palim bei Valeo wurden die Leitlinien für das Forschungsvorhaben gesetzt. Ziel des Projekts ist es, am Beispiel einer hochautomatisierten Fertigungs- und Montagelinie die Eignung Deep-Learning-Verfahren zur Zeitreihenverarbeitung weiter zu erforschen und zu evaluieren.

Herausforderung: hohe Stückzahlen

Die Fertigungslinie bei Valeo Wemding produziert integrierte Sensoren und Kamerasysteme zur Fahrassistenz bis hin zum autonomen Fahren. Aus Produktionsperspektive liegt die Herausforderung darin, intelligente Sensoren in hohen Stückzahlen herzustellen. Daher sei es umso wichtiger, die Nutzung neuartiger Optimierungstools in deutschen Produktionsstätten, die kontinuierlich dazulernen, voranzutreiben, so die Projektverantwortlichen.

„Die Automatisierungsbranche ist immer noch am Anfang, Deep-Learning-Ansätze in den Prozessen zu entdecken und umfassend zu nutzen. Solche Verfahren können eine potenziell höhere Genauigkeit und Generalisierung als konventionelle Machine-Learning-Ansätze bieten und einen echten Produktionsvorteil darstellen“, erklärt Felix Georg Müller, Geschäftsführer bei, Projektpartner plus10.

Unterschiedliche Kompetenzen

Alle drei Verbundparteien bringen dabei verschiedene Kompetenzen in das Projekt mit ein:

Plus10 liefert Know-how zur hochfrequenten Maschinendaten-Erfassung, -Fusion und -Handling als Basis aller FuE-Arbeiten. Das Unternehmen soll forschungs- und entwicklungsseitig Expertise und Vorarbeiten im Bereich der Verhaltensmodellierung von Fertigungsprozessen und Modellierungsansätzen zur Erklärung auftretender Phänomene mit klassischen und Deep-Learning-Ansätzen einbringen, heißt es in der Pressemitteilung.

Die Technische Hochschule Ingolstadt ist mit der Forschungsprofessur für KI-basierte Optimierung in der Automobilproduktion am Institut Almotion Bavaria verantwortlich für die Implementierung, Dokumentation und experimentelle Evaluation verschiedener Machine-Learning-Verfahren und Methoden.

Valeo bringt Wissen über die hochautomatisierte Produktion für proprietäre Technologien ein. Durch Valeo.ai, ein Zentrum für künstliche Intelligenz und Deep Learning in der Automobilbranche, kann das Projekt auf die Forschung von 200 KI-Experten zurückgreifen.

Das Forschungsprojekt Palim wird mit einem Umfang von 1,3 Mio.€ vom Freistaat Bayern über das Bayerische Verbundforschungsprogramm (BayVFP) über 3 Jahre bis August 2024 gefördert. Betreut wird das Projekt vom Projektträger VDI/VDE Innovation + Technik.

Das könnte Sie auch interessieren

Quantencomputer versprechen enorme Rechenleistung und bieten großes Potenzial für Gesellschaft und Wirtschaft. Sie könnten etwa dazu eingesetzt werden, neue medikamentöse Wirkstoffe zu finden. Doch wie ist der aktuelle Stand der Technologie? Dr. Marco Roth vom Fraunhofer IPA gibt einen Überblick.‣ weiterlesen

Capgemini hat die TechnoVision 2023 mit dem Titel 'Right the Technology, Write the Future' veröffentlicht. Der Report hebt Technologietrends hervor, die Führungskräften bei der technologiebasierten Transformation ihres Unternehmens helfen sollen.‣ weiterlesen

Im aktuellen Global CEO Survey von des Beratungsunternehmens PwC geben mehr als 80 Prozent der befragten deutschen CEOs an, dass sie mit einem Rückgang des Weltwirtschaftswachstums rechnen. Inflation, makroökonomische Volatilität und geopolitische Konflikte werden von den Befragten als die größten Gefahren für das Geschäft genannt.‣ weiterlesen

Unternehmen suchen zunehmend nach Konnektivität für eine Vielzahl von Anlagen. Eine größere Vielfalt an Konnektivitätstypen, mehr Sensorfunktionen und Formfaktoren sowie eine größere Softwareintelligenz ermöglichen es dem Markt für Condition-Based Monitoring (CBM), neue Anwendungsfälle zu erschließen und einen größeren Wert für Anwender zu generieren. Einem neuen Bericht des Technologieunternehmens ABI Research zufolge sollen die zustandsorientierten Überwachungssensoren bis 2026 277 Millionen Anschlüsse erreichen.‣ weiterlesen

In sechs neuen Projekten des Spitzencluster it's OWL entwickeln 18 Unternehmen und fünf Forschungseinrichtungen gemeinsam Ansätze und Lösungen, um konkrete Herausforderungen der Industrie anzugehen.‣ weiterlesen

Maschinen mit IIoT-Funktionalitäten werden meist mit Sensorik ausgeliefert, die aktuelle Fertigungsdaten erhebt und verarbeitet. Um diese IIoT-Daten jedoch übergreifend zu nutzen, braucht es eine weitere Software-Instanz zur Verarbeitung: das Manufacturing Execution System (MES) .‣ weiterlesen