Chancen und Herausforderungen der Implementierung

Machine Learning in der Fertigung

Damit Machine Learning-Projekte zum Erfolg werden, müssen einige Hürden überwunden werden. Sie können beispielsweise schon an der Datengrundlage scheitern. Damit dies nicht geschieht, hat Stanislav Appelganz von WaveAccess ein paar Tipps zusammengestellt.

(Bild: ©NicoElNino/stock.adobe.com)

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning erkennen IT-Systeme Muster und Zusammenhänge aus Daten und lernen daraus. Klassische Anwendungsfälle sind etwa die Bearbeitung von Kundenanfragen oder die Erkennung von Störfällen. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu. Die Implementierung von Machine Learning bringt aber auch Herausforderungen mit sich – darunter fallen beispielsweise die Datenaufbereitung, die Bereitstellung des Konzepts oder die Schätzung des ROI. Für die Umsetzung werden daher interne und externe Experten und Partner, Projekterfahrung sowie eine realistische Zielsetzung benötigt. Auch externe Partner können helfen. Fertiger können von ML auch in den Bereichen Asset Management, Supply Chain Management sowie der Lagerhaltung profitieren. Im Fokus stehen etwa Bedarfsprognosen, die automatische Bestandskontrolle und die Optimierung der Beschaffungsverfahren.

Woran es fehlt

ML-Projekte scheitern oftmals an der Qualität der vorhandenen Daten. Eine ideale Datenbasis ist groß – mit 10.000 bis 100.000 Fakten – korrekt, hinreichend umfassend und sachgerecht gekennzeichnet. Dieser Idealzustand ist in der Praxis nur selten vorhanden, es gibt jedoch Maßnahmen diesen zu erreichen.

  • • Unvollständigkeit: Wenn nicht ausreichend Inputdaten bereitgestellt werden können, muss die Problemstellung neu eingegrenzt werden. Ähnliches gilt bei zu kleinen Datenmengen in bestimmten Situationen. Für eine automatische Routenplanung dürfen beispielsweise nicht nur die Daten aus einer bestimmten Region vorliegen, deren spezielles Muster nicht auf andere übertragbar ist.
  • • Unkorrektes Labelling: Zum Training benötigen ML-Algorithmen korrekte Antworten auf die gestellten Fragen. Die Datensätze müssen also entsprechend gekennzeichnet sein. Jedoch sollte das nicht allein den Technologiepartnern überlassen werden, da oft das nötige Domänenwissen fehlt. Hausinterne Fachleute sollte also eingebunden werden.
  • • Datenfehler: Es besteht die Gefahr einer größeren Menge systematischer Fehler, wenn die Grunddaten des ML-Modells manuell gesammelt wurden. Experten sollten daher die Daten im Vorfeld überprüfen und korrigieren – ein ML-Modell verzeiht nur einzelne Fehler ohne gemeinsames Muster.

Mit Prototypen starten

Mit der Erstellung eines Pilotprojekts kann die Technologie getestet und somit das Potenzial für Anwendungen und Aufgaben besser verstanden werden. ML-Projekte sollten daher immer zunächst als Proof of Concept angegangen werden. Dabei geht es um Fragen wie: Welche Daten repräsentieren oder beeinträchtigen die Zusammenhänge am besten oder welche Trefferquote ist mit dem Modell erreichbar und wie kann sie verbessert werden? Zudem kommt ein Prototyp mit anonymisierten Datenquellen aus – sprich ohne die Weitergabe sensibler Daten an den Technologiepartner.

Das könnte Sie auch interessieren

Die aktuelle Innovationserhebung des ZEW zeigt, dass die Ausgaben in diesem Segment 2024 einen neuen Höchststand erreicht haben. Der Dienstleistungssektor verzeichnet dabei größere Wachstumsraten als die Industrie.‣ weiterlesen

Die Eclipse Foundation unterstützt weltweit Entwickler und Organisationen im Bereich Open Source Software. Ende Oktober traf sich die Community in Mainz zur Konferenz Open Community Experience (OCX). Unser Redakteur Marco Steber (IT&Production/INDUSTRIE 4.0 & IIoT-MAGAZIN) war ebenfalls vor Ort und sprach mit Mike Milinkovich, Executive Director der Eclipse Foundation, über Möglichkeiten und Herausforderungen im Bereich Open Source Software - in der Industrie und auch darüber hinaus.‣ weiterlesen

Innovationsführerschaft und Wettbewerbsfähigkeit sind entscheidende Faktoren für den Erfolg eines Unternehmens. Die Kooperation mit Startups kann etablierte Unternehmen dabei unterstützen Innovationszyklen zu beschleunigen, neue Geschäftsmodelle zu etablieren oder Prozesse im Unternehmen effizienter zu gestalten. Das Venture-Client-Modell ist eine vergleichsweise neue Form der Zusammenarbeit mit Startups, und erweist sich als effektiver und effizienter als andere Corporate Venturing Modelle.‣ weiterlesen

Eine neue Studie des Capgemini Research Institute geht der Frage nach, wie es um Nachhaltigkeit bei der Nutzung generativer KI (GenAI) steht. Der Studie ‘Developing sustainable Gen AI’ zufolge hat GenAI erhebliche und zunehmende negative Aus­wirkungen auf die Umwelt.‣ weiterlesen

Ist die Industrie 4.0 eine Revolution? Aus Sicht des Fraunhofer Instituts für System - und Innovationsforschnung lautet die Antwort: nein. Die Forschenden kommen in ihrer Veröffentlichung zu dem Schluss, dass sich eher von einer Evolution sprechen lasse.‣ weiterlesen

Laut einer repräsentativen Umfrage des Bitkom nimmt die digitale Abhängigkeit der deutschen Wirtschaft zu. Mit Blick auf die USA und China stellt dies die Unternehmen vor Herausforderungen.‣ weiterlesen