Chancen und Herausforderungen der Implementierung

Machine Learning in der Fertigung

Damit Machine Learning-Projekte zum Erfolg werden, müssen einige Hürden überwunden werden. Sie können beispielsweise schon an der Datengrundlage scheitern. Damit dies nicht geschieht, hat Stanislav Appelganz von WaveAccess ein paar Tipps zusammengestellt.

(Bild: ©NicoElNino/stock.adobe.com)

Automatisierung, künstliche Intelligenz (KI), Internet of Things (IoT) und Machine Learning (ML) kommen bereits in vielen Unternehmen zum Einsatz. Mit Hilfe von Machine Learning erkennen IT-Systeme Muster und Zusammenhänge aus Daten und lernen daraus. Klassische Anwendungsfälle sind etwa die Bearbeitung von Kundenanfragen oder die Erkennung von Störfällen. Aber auch die Unterstützung bei einer rein datengestützten Entscheidungsfindung und die Interpretation großer Datenmengen gehören dazu. Die Implementierung von Machine Learning bringt aber auch Herausforderungen mit sich – darunter fallen beispielsweise die Datenaufbereitung, die Bereitstellung des Konzepts oder die Schätzung des ROI. Für die Umsetzung werden daher interne und externe Experten und Partner, Projekterfahrung sowie eine realistische Zielsetzung benötigt. Auch externe Partner können helfen. Fertiger können von ML auch in den Bereichen Asset Management, Supply Chain Management sowie der Lagerhaltung profitieren. Im Fokus stehen etwa Bedarfsprognosen, die automatische Bestandskontrolle und die Optimierung der Beschaffungsverfahren.

Woran es fehlt

ML-Projekte scheitern oftmals an der Qualität der vorhandenen Daten. Eine ideale Datenbasis ist groß – mit 10.000 bis 100.000 Fakten – korrekt, hinreichend umfassend und sachgerecht gekennzeichnet. Dieser Idealzustand ist in der Praxis nur selten vorhanden, es gibt jedoch Maßnahmen diesen zu erreichen.

  • • Unvollständigkeit: Wenn nicht ausreichend Inputdaten bereitgestellt werden können, muss die Problemstellung neu eingegrenzt werden. Ähnliches gilt bei zu kleinen Datenmengen in bestimmten Situationen. Für eine automatische Routenplanung dürfen beispielsweise nicht nur die Daten aus einer bestimmten Region vorliegen, deren spezielles Muster nicht auf andere übertragbar ist.
  • • Unkorrektes Labelling: Zum Training benötigen ML-Algorithmen korrekte Antworten auf die gestellten Fragen. Die Datensätze müssen also entsprechend gekennzeichnet sein. Jedoch sollte das nicht allein den Technologiepartnern überlassen werden, da oft das nötige Domänenwissen fehlt. Hausinterne Fachleute sollte also eingebunden werden.
  • • Datenfehler: Es besteht die Gefahr einer größeren Menge systematischer Fehler, wenn die Grunddaten des ML-Modells manuell gesammelt wurden. Experten sollten daher die Daten im Vorfeld überprüfen und korrigieren – ein ML-Modell verzeiht nur einzelne Fehler ohne gemeinsames Muster.

Mit Prototypen starten

Mit der Erstellung eines Pilotprojekts kann die Technologie getestet und somit das Potenzial für Anwendungen und Aufgaben besser verstanden werden. ML-Projekte sollten daher immer zunächst als Proof of Concept angegangen werden. Dabei geht es um Fragen wie: Welche Daten repräsentieren oder beeinträchtigen die Zusammenhänge am besten oder welche Trefferquote ist mit dem Modell erreichbar und wie kann sie verbessert werden? Zudem kommt ein Prototyp mit anonymisierten Datenquellen aus – sprich ohne die Weitergabe sensibler Daten an den Technologiepartner.

Das könnte Sie auch interessieren

Was mit Produkten wie Siri oder Alexa für das eigene Zuhause bereits im Alltag angekommen ist, könnte auch in Produktionsumgebungen Mehrwerte schaffen - die Sprachsteuerung von Maschinen. Der Embedded-KI-Spezialist Aitad zeigt die Möglichkeiten auf.‣ weiterlesen

Die SPS wird im nächsten Jahr (2025) vom 25. bis zum 27. November in Nürnberg stattfinden und somit wieder auf den seit vielen Jahren bekannten Zeitraum zurückkehren.‣ weiterlesen

Laut aktuellem Lagebild Cyberkriminalität sind Taten aus dem Ausland erneut gestiegen während solche aus dem Inland leicht rückläufig waren. Mehr als 800 Unternehmen haben 2023 einen Ransomwareangriff angezeigt, wobei von einer weitaus höheren Dunkelziffer ausgegangen wird.‣ weiterlesen

Anfang Mai fand die offizielle Eröffnungsfeier des AAS Dataspace for Everybody statt. Die Plattform soll kleinen und mittleren Unternehmen den Zugang zu Datenräumen, digitalen Zwillingen und Verwaltungsschalen erleichtern.‣ weiterlesen

3 Prozent der großen Industrieunternehmen setzen GenAI bereits großflächig ein, und rund ein Viertel hat erste Pilotprojekte gestartet. Laut einer Untersuchung der Unternehmensberatung McKinsey kann die Mehrheit der Unternehmen den Mehrwert der Technologie für den Unternehmenserfolg bislang aber noch nicht beziffern.‣ weiterlesen

Die Industrie arbeitet daran, die Barrieren zwischen IT und OT abzubauen. So können Unternehmen ihre Produktion effizienter und innovativer gestalten und im immer härter werdenden globalen Wettbewerb bestehen. Francis Chow von Red Hat erklärt, welche Rolle Open-Source-Technologien dabei spielen.‣ weiterlesen

Für dauerhafte Wettbewerbsfähigkeit müssen deutsche Hersteller angesichts weiterhin drohender Rezession und hoher Energiekosten die nächste Stufe der Digitalisierung erreichen. Die Mehrheit der Unternehmen bereitet sich in diesem Zug auf Smart Manufacturing vor, wie eine von Statista durchgeführte und Avanade beauftragte Studie zeigt.‣ weiterlesen

Ein Bericht von ABI Research und Palo Alto Networks über den Stand der OT-Sicherheit zeigt, dass im vergangenen Jahr eines von vier Industrieunternehmen seinen Betrieb aufgrund eines Cyberangriffs vorübergehend stilllegen musste. Die Komplexität beim Einsatz von OT-Sicherheitslösungen stellt für die Befragten das größte Hindernis dar.‣ weiterlesen

Eine Umfrage von Hewlett Packard Enterprise (HPE) unter 400 Führungskräften in Industrie-Unternehmen in Deutschland zeigt, dass zwei Drittel der Befragten den Data Act als Chance wahrnehmen. Der Data Act stieß unter anderem bei Branchenverbänden auf Kritik.‣ weiterlesen

Deutsche Unternehmen nehmen eine zunehmende Bedrohung durch Cyber-Angriffe wahr. Das zeigt eine aktuelle Umfrage vom Markt- und Meinungsforschungsinstitut YouGov im Auftrag von 1&1 Versatel, an der mehr als 1.000 Unternehmensentscheider teilnahmen.‣ weiterlesen

Fraunhofer-Forschende haben für Fahrer und Fahrerinnen von Baumaschinen einen Helm mit integriertem Beschleunigungssensor entwickelt. Die Helm-Sensorik misst die Vibrationen der Baumaschinen. Die Sensorsignale werden analysiert, eine Software zeigt die Belastung für den Menschen an.‣ weiterlesen