
Breitbandausbau: Smartes Update für die Industrie Der deutsche Glasfaserausbau treibt die Industrie der Zukunft voran. Mit vernetzten Maschinen im Internet der Dinge laufen Prozesse effizient und automatisiert ab. ‣ weiterlesen
Mit stärkerer Vernetzung steigt die Menge übertragener Sensordaten und damit die Anforderungen an IIoT-angebundene Geräte, Maschinen und Anlagen. Dabei gewinnt die Echtzeitverarbeitung dieser Daten an Bedeutung, obwohl das gerade bei großen Datenmengen weitere Herausforderungen stellt. Mit Edge Computing stellen Industrieunternehmen sicher, dass erfasste Daten entlang der Wertschöpfungskette keine Prozesse blockieren.
(Bild: Schubert System Elektronik GmbH)
Als Edge (zu Deutsch Kante) bezeichnet man den Rand eines technischen Informationsnetzwerks, an dem virtuelle und reale Welten aufeinander treffen. In einer dezentralen IT-Architektur werden anfallende Daten nicht im Rechenzentrum, sondern direkt an diesem Übergang verarbeitet und bei Bedarf in die Cloud verschoben. Edge Computing ermöglicht an dieser Stelle die Datenvorverarbeitung in Echtzeit: Gesammelte Daten werden lokal nach definierten Kriterien verdichtet. Erste Analyseergebnisse können nun direkt an die Endgeräte rückgekoppelt oder weiterverarbeitet werden. Anschließend besteht die Möglichkeit, nur relevante und damit kleinere Datenpakete in die Cloud zu transferieren, die nicht für sich allein nutzbar sind. Durch die Reduzierung der Datenmenge werden stationäre Server entlastet, aber auch die laufenden Kosten für die Datenübertragung und die Cloud reduziert. Diese dezentrale Verarbeitung schont nicht nur Ressourcen, sondern reduziert auch das Risiko des Datenverlustes außerhalb der Anlage beziehungsweise bei Cyber-Attacken auf die Cloud. Mittels Edge Computing können Latenzzeiten verkürzt, Datenströme optimiert und Produktionsflüsse sowie Prozesse verbessert werden.
Breitbandausbau: Smartes Update für die Industrie Der deutsche Glasfaserausbau treibt die Industrie der Zukunft voran. Mit vernetzten Maschinen im Internet der Dinge laufen Prozesse effizient und automatisiert ab.
‣ weiterlesen
Im Industrie-4.0-Reifegradmodell der Acatech ist die Vorverarbeitung von Daten auf der 3. Stufe zu verorten: Sensoren erfassen eine Vielzahl an Datenpunkten und bilden damit Prozesse von Anfang bis Ende ab. Im nächsten Schritt werden die Daten sichtbar, die in der Vorverarbeitung nach ersten Relevanzkriterien analysiert werden. Die Erkenntnisse aus dieser Datenauswertung werden auf der 4. und 5. Stufe des Modells automatisiert in die Prozesse gespiegelt und finden dort Anwendung, um Wirkungszusammenhänge ableiten und die Prognosefähigkeit verstärken zu können (beispielsweise für Predictive Maintenance). Mobile Arbeitsmaschinen (Automated Guided Vehicles, Automated Guided Cars) beispielsweise nutzen das Edge Computing zur lokalen Datenanalyse und schicken nur Änderungsdaten in Echtzeit in die Cloud. Von dort erhalten sie weitere Aufgaben oder das Update für ihre Navigationsdaten.
Bei der Integration eines IIoT müssen OT (Operational Technology) und IT (Informational Technology) zunehmend stärker miteinander verbunden werden. Hier kommt das Edge Gateway zum Einsatz. Die Ebenen Steuerung und Datenverarbeitung sowie die Schnittstelle zur Cloudebene können auf einem Gerät vereint werden. Diese Edge Gateways bündeln fünf wichtige Funktionalitäten: Daten, die aus der Maschine extrahiert werden, die Steuerung/HMI und die Datenvorverarbeitung beschreiben das eigentliche Edge Computing. Das Gateway übernimmt zusätzlich die Cloud-Anbindung und den Remote-Zugriff bis auf die Sensorebene. Die Komprimierung auf ein Gerät bedeutet Kostenersparnis, weniger Maintenance- und Ressourcen-Aufwand und mehr Platz im Schaltschrank. Die Anwender haben statt mehrerer nur einen Ansprechpartner für Steuerung, Cyber Security sowie die Datenverarbeitung. Letztere ist durch die Edge-Computing-Lösung unabhängig von der eigentlichen Prozessaufgabe der Maschine. Damit läuft die Maschine weiter, wenn die Cloud beziehungsweise Internetanbindung einmal ausfallen sollte. Die benötigten Daten werden in diesem Fall lokal zwischengespeichert und gesichert, bis sie wieder in die Cloud transferiert werden können. Durch die Vorverarbeitung bleiben Rohdaten außerdem bei der ursprünglichen Quelle. Unternehmenskritische oder sensible Daten sind leichter zu schützen, das Risiko des Datenmissbrauchs wird reduziert. Die prozessnahe Datenanalyse vereinfacht außerdem die vorausschauende Wartung und Qualitätssicherung. Dies verspricht neben der Erfüllung der Echtzeitanforderungen einen unmittelbaren, positiven Effekt auf die Produktivität.
Wie können Big-Data- und KI-Anwendungen gewinnbringend genutzt werden, ohne Datenschutz und IT-Sicherheit zu verletzen? Mit dieser Frage beschäftigt sich eine juristische Studie des Nationalen Forschungszentrums für angewandte Cybersicherheit Athene.‣ weiterlesen
Künstliche Intelligenz könnte in Zukunft dabei helfen, die Arbeit in Industriebetrieben sicherer, einfacher und produktiver zu machen. Das ist die Vision des europäischen Forschungsprojekts Perks, an dem auch die Wirtschaftsuniversität Wien (WU) beteiligt ist.‣ weiterlesen
Das kanadische Technologieunternehmen Vention hat ausgewertet, wie Hersteller den 'Do-it-yourself'-Ansatz (DIY) nutzen, um ihre Produktion zu automatisieren. Die Studie basiert auf anonymisierten Daten von weltweit mehr als 4.000 B2B-Nutzern der Manufacturing Automation Platform (MAP) von Vention.‣ weiterlesen
Laut International-Innovation-Barometer des Beratungsunternehmens Ayming ist Deutschland ein beliebter Standort für Investitionen für Forschung und Entwicklung. Die Untersuchung zeigt zudem, dass Expertise wichtiger ist als Geld.‣ weiterlesen
Industriesteuerungen werden durch die Nutzung moderner Technologien zunehmend abstrahiert - und damit kompakter, flexibler und einfacher zu warten. Diese Entwicklung führt schließlich zur virtuellen SPS. Doch wie sieht dies in der Praxis aus, wie lässt sie sich verwenden und kann sie auch noch sicher sein?‣ weiterlesen
Im Rahmen der Initiative ’Mission KI’ der Bundesregierung entstehen zwei KI-Zentren, eines davon in enger Kooperation mit dem Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI) in Kaiserslautern. Gründer, Startups und Unternehmen sollen dort Zugang zur Spitzenforschung erhalten und ihre Anwendungen in Testumgebungen verbessern können.‣ weiterlesen
In sämtlichen Bereichen der Produktion fallen Daten an und auch KMU können daraus einen Nutzen ziehen. Beispiele aus Forschungsprojekten des Technologieprogramms Edge Datenwirtschaft zeigen, wie die Zukunft der sicheren und effizienten Datennutzung und -verarbeitung für Unternehmen aus der Produktion aussehen kann.‣ weiterlesen
In einer aktuellen Studie mahnt der Elektronikkonzern Sharp die Wichtigkeit von IT-Sicherheitsmaßnahmen für Multifunktionsdrucker (MFPs) an. Demnach war bereits jedes fünfte deutsche KMU von einer über MFPs ausgehenden IT-Sicherheitsverletzung betroffen. Dennoch hat mehr als ein Drittel keine druckerspezifischen Sicherheitsvorkehrungen getroffen.‣ weiterlesen
Nachhaltigkeit ja, nur wie? Eine Lünendonk-Studie zeigt, dass viele Industrieunternehmen zwar eine Strategie haben, die Umsetzung dieser allerdings vielerorts noch stockt. Die Erwartungen an die Unternehmen werden jedoch nicht kleiner.‣ weiterlesen
Die vierte industrielle Revolution macht aus Produktionsanlagen ein intelligentes Netz aus Maschinen und Prozessen – theoretisch. Auf dem Weg dorthin scheitern Unternehmen häufig, wenn künstliche Intelligenz und ML-Methoden im Spiel sind. Eine sorgsam geplanten Transformationsstrategie hilft das zu vermeiden.‣ weiterlesen
Lieferkettenstörungen sind eine Belastung für Industrieunternehmen, die bis hin zum Produktionsstillstand führen können. Dies war im vergangenen Jahr an 32 Tagen der Fall. Um sich diesem Problem entgegenzustellen, will die Mehrheit der Unternehmen auf die Diversifizierung der Lieferketten setzen.‣ weiterlesen