Künstliche Intelligenz zwischen Wertschöpfungspotenzialen und Hindernissen

Matchmaking für KI-Anwendungen

Wollen Unternehmen KI-Lösungen implementieren, stehen sie oft technisch wie auch personell vor Herausforderungen. Das beginnt oft schon mit der Identifizierung geeigneter Use Cases. Das Forschungsprojekt ‘What can AI do for me’ will es Unternehmen ermöglichen, geeignete Anwendungsmöglichkeiten über eine Matchmaking-Plattform zu identifizieren.

(Bild: ©alphaspirit/stock.adobe.com)

Künstliche Intelligenz (engl.: Artificial Intelligence, AI) ist eine der bedeutendsten Technologien der heutigen Zeit. Beim Einsatz der Technologie stehen in der Regel Umsatz- und Effizienzsteigerung, Kostensenkung und die Sicherung von Wettbewerbsvorteilen im Vordergrund. Wissenschaftliche Bestätigung der Effekte auf Unternehmensebene gibt es hingegen kaum. Die wenigen Forschungsarbeiten auf diesem Gebiet stellen positive Auswirkungen, wie die Verbesserung von Produkten, monetäre Einsparungen durch optimiertes Ressourcenmanagement und einen Anstieg der allgemeinen Unternehmensperformance fest. Außen vor bleibt allerdings der Rückschluss auf den individuellen Beitrag spezifischer Anwendungen. Dieses Wissen wird für strategische Entscheidungen bezüglich der Implementierung von KI jedoch dringend benötigt, beispielsweise um den Return on Investment von solcher Projekten einschätzen zu können. Fehlt es, verzögert dies Entscheidungen auf Unternehmensseite und bremst die Implementierung von AI-Technologien im großen Stil aus.

KI-Partnersuche

Im Rahmen des Verbundforschungsprojekts ‘What can AI do for me?’ entwickelt das Institute for Applied Artificial Intelligence (IAAI) der Hochschule der Medien in Kooperation mit ThingsThinking und Kenbun IT eine KI-basierte Plattform, die es Unternehmen ermöglichen soll, geeignete Anwendungsmöglichkeiten und AI-Dienstleistungsunternehmen für ihr Business zu finden. Ausgehend von der Beschreibung der Problemstellungen ihres Business Case werden über ein semantisches Matching-Verfahren passende Anwendungsfälle vorgeschlagen.

Des Weiteren zeigt die Plattform das geschätzte Wertschöpfungspotenzial des Anwendungsfalls auf Basis einer Expertenmeinung an, welches als eine erste Orientierung für eine Bewertung des AI-Vorhabens herangezogen werden kann. Gefördert wurde das Projekt über 12 Monate hinweg im Zuge des KI-Innovationswettbewerbs vom Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg. Im Oktober startete die Beta-Version der Matching-Plattform und steht seitdem für die Verwendung unter whatcanaidoforme.com kostenfrei zur Verfügung. Grundlage dafür ist die im Projekt entstandene AI Value Creation-Studie des IAAI der Hochschule der Medien. In diesem Zusammenhang ermittelte das Forschungsteam in über 40 qualitativen Experteninterviews mit KI-Anwender- und AI-Dienstleistungsunternehmen mehr als 90 Use Cases.

Auf Anwendungsfallebene wurden dann die wertschöpfenden Potenziale – insbesondere im Hinblick auf eine mögliche Umsatz- und Unternehmenswertsteigerung sowie Kostensenkung – genauer untersucht. Zusätzlich wurden aktuelle Hindernisse bei der KI-Implementierung ermittelt. Darauf aufbauend wurde zudem eine quantitative Untersuchung unter mehr als 50 Branchenexperten durchgeführt, um einige der Ergebnisse aus der initialen qualitativen Forschung zu evaluieren. Für eine bessere Vergleichbarkeit wurden die Use Cases in Cluster, basierend auf den von der AI ausgeführten Aufgaben, eingeteilt. Diese Cluster wurden anschließend Unternehmensfunktionen zugeordnet. Im Rahmen der Studie wurden besonders viele Use Cases in Produktion und Supply Chain, Marketing und Sales und im Kundenservice identifiziert. Ebenfalls verbreitet sind Use Cases, die funktionsübergreifend zum Einsatz kommen können, wie etwa die KI-gestützte Bearbeitung von Dokumenten. Trotz der vergleichsweise großen Zahl an Interviews, bilden die erhobenen Use Cases aber nicht die Menge an möglichen Anwendungsszenarien vollständig ab.

Potenzial variiert

Die spezifischen Wertschöpfungspotenziale variieren je nach Unternehmensbereich und der konkreten Aufgabe, die die KI erledigen soll. Die Wertschöpfungspotenziale für die in der Studie erhobenen Use Cases im Bereich Produktion und Lieferkette zeichnen sich primär durch eine Kostenreduktion und der Umsetzung einer effizienteren und unterbrechungsfreien Produktionskette aus. Wenn es stattdessen um die Vereinfachung von kundennahen Prozessen geht, wie die Personalisierung der Kommunikation oder die automatisierte Bepreisung von Produkten, treten vor allem die Potenziale für das Umsatzwachstum und die Unternehmenswertsteigerung hervor.

Bei crossfunktionalen AI-Anwendungen ist das Wertschöpfungspotenzial sehr divers und die Einschätzung abhängig vom individuellen Anwendungsbereich. Neben diesen Erkenntnissen wurden in den Interviews Aspekte der AI-Anwendungen genannt, die sich abseits von Kosten, Umsatz und Unternehmenswert begünstigend auf die Wertschöpfung auswirken und als weitere Ziele des AI-Einsatzes gelten. Dazu zählen etwa die Prozessoptimierung, die Förderung der ökologischen und ökonomischen Nachhaltigkeit, die Steigerung der Mitarbeiterzufriedenheit, ein verbessertes Unternehmensimage durch die Assoziation mit Innovation und Fortschritt sowie eine damit verbundene Steigerung der Unternehmensattraktivität.

Das könnte Sie auch interessieren

Vom 22. bis zum 26. April wird Hannover zum Schaufenster für die Industrie. Neben künstlicher Intelligenz sollen insbesondere Produkte und Services für eine nachhaltigere Industrie im Fokus stehen.‣ weiterlesen

Eine Umfrage von Hewlett Packard Enterprise (HPE) unter 400 Führungskräften in Industrie-Unternehmen in Deutschland zeigt, dass zwei Drittel der Befragten den Data Act als Chance wahrnehmen. Der Data Act stieß unter anderem bei Branchenverbänden auf Kritik.‣ weiterlesen

Carbon Management-Technologien stehen im Fokus, um CO2-Emissionen zu reduzieren und zu managen. Die Rolle des Maschinenbaus und mögliche Entwicklungspfade betrachtet eine neue Studie des VDMA Competence Center Future Business.‣ weiterlesen

Deutsche Unternehmen nehmen eine zunehmende Bedrohung durch Cyber-Angriffe wahr. Das zeigt eine aktuelle Umfrage vom Markt- und Meinungsforschungsinstitut YouGov im Auftrag von 1&1 Versatel, an der mehr als 1.000 Unternehmensentscheider teilnahmen.‣ weiterlesen

Hohe Geschwindigkeit und hohe Erkennungsraten sind die Anforderungen an die Qualitätskontrolle in der Verpackungsbranche. Wie diese Anforderungen erreicht werden können, zeigt das Unternehmen Inndeo mit einem Automatisierungssystem auf Basis von industrieller Bildverarbeitung und Deep Learning.‣ weiterlesen

Laut einer Studie der Unternehmensberatung Bain & Company könnten Unternehmen ihre Produktivität durch digitale Tools, Industrie 4.0-Technologien und Nachhaltigkeitsmaßnahmen steigern. Deren Implementierung von folgt oft jedoch keiner konzertierten Strategie.‣ weiterlesen

Jeder zweite Betrieb investiert laut einer Betriebsräte-Befragung der IG Metall zu wenig am Standort. Demnach verfügen rund 48 Prozent der Unternehmen über eine Transformationsstrategie. Zudem sehen die Betriebsräte ein erhöhtes Risiko für Verlagerungen.‣ weiterlesen

Ob es sich lohnt, ältere Maschinen mit neuen Sensoren auszustatten, ist oft nicht klar. Im Projekt 'DiReProFit' wollen Forschende dieses Problem mit künstlicher Intelligenz zu lösen.‣ weiterlesen

Ziel des neuen VDMA-Forums Manufacturing-X ist es, der zunehmenden Bedeutung von Datenräumen als Basis für neue, digitale Geschäftsmodelle Rechnung zu tragen. Wie der Verband mitteilt, soll das Forum auf dem aufbauen, was in der letzten Dekade durch das VDMA-Forum Industrie 4.0 erarbeitet wurde. ‣ weiterlesen

Wie kann eine Maschine lernen, sich in unserer Lebenswelt visuell zu orientieren? Mit dieser Frage setzen sich die Wissenschaftler am Deutschen Forschungsinstitut für Künstliche Intelligenz (DFKI) aktuell auseinander – und entwickeln Lösungen.‣ weiterlesen

Die seit 2020 geltende staatliche Forschungszulage etabliert sich im deutschen Maschinen- und Anlagenbau mehr und mehr als Instrument der Forschungsförderung. Ein wachsender Anteil der Unternehmen nutzt die Forschungszulage. Besonders geschätzt werden die verbesserten Finanzierungsmöglichkeiten sowie der erleichterte Zugang zur staatlichen Förderung von Forschung und Entwicklung (FuE).‣ weiterlesen