Bis heute ist es der heilige Gral der Naturwissenschaften, diese Gesetze der Quantenmechanik mit den klassischen Naturgesetzen wie der Gravitation in Einklang zu bringen, denen die Welt im Großen gehorcht – von der Rotation der Planeten bis zu unserem Leben auf der Erde. Doch obwohl wir nicht wissen, wo (und warum) die Grenze zwischen der Welt der Elementarteilchen und unserer verläuft, können wir die Funktionsprinzipien der Quanten hier und jetzt für uns nutzen. Das ist in etwa so, als könnten wir ein Elektroauto ins Mittelalter teleportieren: Die Menschen wüssten nicht, warum es fährt – aber dennoch würde es sie von A nach B bringen.
Ähnlich wie ein Auto oder Flugzeug zu einem Pferd verhält sich die Geschwindigkeit eines Quantencomputers zu der eines Binärrechners. Während zwei Bits in der klassischen Welt vier Kombinationen erlauben (01, 10, 00 oder 11), entspricht ein Quantenbit (auch Qubit genannt) durch die Möglichkeit der Überlagerung beider Zustände allen möglichen Kombinationen aus Zahlen >0 und <1. Durch jedes zusätzliche Qubit wächst die Rechenleistung exponentiell, sodass 193 herkömmliche Bits benötigt würden, um ein einziges Qubit zu codieren. Anders gesagt: Während ein klassischer 32-Bit-Rechner eben genau 32 Berechnungen gleichzeitig ausführen kann (32 mal 01 oder 10), ist ein 32-Qubit-Computer zu 320 Milliarden Berechnungen gleichzeitig in der Lage. Das entspricht der Anzahl der Sterne in unserer Galaxis.
Neben dieser sogenannten Überlagerung existiert in der Quantenwelt das noch wesentlich mysteriösere Phänomen der Verschränkung. Von den Pionieren der Teilchenphysik um Einstein und Heisenberg wurde es als spukhafte Fernwirkung bezeichnet. Die Verschränkung tritt nur im Quantenraum, also auf Ebene der Elementarteilchen, auf und verblüfft die Wissenschaft seit mehr als 100 Jahren. Normalerweise werden Teilchen in diesem Universum als Paare erzeugt. Die Paare sind durch eine Eigenschaft des Teilchens unterscheidbar, sei es Spin oder Ladung. Das beobachtete Verschränkungsprinzip besagt, dass ein verschränktes Teilchen genau das Spiegelbild der Daten erhält, die auf sein Partnerteilchen übertragen werden, selbst wenn sich beide Teilchen an den entgegengesetzten Enden des Universums befinden. Information kann also mittels verschränkter Teilchen ohne Zeitverlust über beliebige Distanzen transportiert werden, was nicht nur die Lichtgeschwindigkeit als absolute Grenze nivelliert, sondern gar das Prinzip von Raum und Zeit widerlegt und die grundlegenden Gesetze des Universums infrage stellt.
Ähnlich wie im Bild des Autos im Mittelalter gleicht die Technologie der Quantenverschränkung einem Raumschiff aus der Zukunft, das wir plötzlich vor unserer Haustür finden: Auch wenn wir nicht verstehen, wie es funktioniert, können wir einiges damit anfangen. Etwa auf dem Gebiet der Cybersicherheit. Stellen wir uns zwei Schlüssel vor, die als Paar hergestellt werden. Selbst wenn ein Hacker in der Lage wäre, einen der Schlüssel exakt zu reproduzieren: Sobald er eines der Originale lokalisiert, registriert das verschränkte System das unmittelbar und kann entsprechend geändert werden.
Quanten-Tunneling ist ein weiteres Phänomen des Quantensystems, das sich für moderne KI-Anwendungen eignet. Ähnlich wie Überlagerung und Verschränkung ist es aber nicht intuitiv. Da wir mit diesen ganz realen Phänomenen in unserer Welt keine Erfahrungen haben, widersprechen sie oft dem, was wir den gesunden Menschenverstand nennen. Wir müssen schlicht akzeptieren, dass auf der Ebene der Elementarteilchen andere Naturgesetze herrschen als in unserer ‘großen’ Welt. Stellen wir uns vor, ein Ball rollt auf einen Hügel zu. Da Teilchen in der Quantenwelt auch als masselose Welle existieren, besteht die geringe Wahrscheinlichkeit, dass ein Teilchen auf der anderen Seite des Hügels erscheint – und zwar ohne die erforderliche kinetische Energie zu haben, über den Hügel zu rollen. Es rollt den Hügel also nicht hinauf, sondern formt gewissermaßen einen Tunnel, durch den es die andere Seite erreicht.
Zentrale Funktionsweise von KI und Machine Learning ist das sogenannte Gradientenverfahren. Es wird in der Numerik eingesetzt, um allgemeine Optimierungsprobleme zu lösen und das sogenannte Globale Optimum zu ermitteln. Dabei schreitet man von einem Startpunkt aus entlang einer Abstiegsrichtung, bis keine numerische Verbesserung mehr erzielt wird – als würde man den Hang eines Hügels hinabschreiten. Das Tunneling könnte diesen Prozess maßgeblich verkürzen, da zur Ermittlung eines Lokalen Optimums das Gefälle des Hügels keine natürliche Grenze mehr darstellt. Er könnte direkt durchtunnelt werden und das bisherige Verfahren des Gradientenabstiegs revolutionieren. Diese Technik könnte auch dabei helfen, schnell ein Globales Optimum zu bestimmen und nicht bei lokalen Optima zu verharren.
Als Vorreiter von Erfindergeist und Innovationskraft galt der Maschinenbau lange Zeit als Aushängeschild der deutschen Wirtschaft. Vor allem aufgrund einer zögerlichen Digitalisierung ist das Getriebe der Branche allerdings ins Stocken geraten. Mosaixx, Anbieter der gleichnamigen Cloud-Plattform, wirft einen Blick auf die zentralen Probleme und möglichen Lösungswege. ‣ weiterlesen
Forscher des Exzellenzclusters Physics of Life (PoL) an der Technischen Universität Dresden (TUD) und der University of California Santa Barbara (USCB) haben Robotergruppen entwickelt, die sich wie intelligente Materialien mit regulierbarer Form und Festigkeit verhalten und so lebende Systeme imitieren.‣ weiterlesen
Viele kleine und mittelständische Betriebe fremdeln nach wie vor mit dem Begriff Industrie 4.0: Lösungen von der Stange erscheinen oft zu komplex und zu teuer oder sind mehr am technisch Machbaren als am konkreten Bedarf einer Fertigungsanforderung orientiert. Oft überfordert das die Mitarbeitenden mehr, als dass es sie unterstützt. ‣ weiterlesen
Die Nominierten für den Deutschen Zukunftspreis stehen fest: Die drei Teams widmen sich digitalem Licht, effizienter generativer KI und energieeffizienten Halbleitern. Die Preisverleihung des mit 250.000€ dotierten Preises erfolgt am 27. November. ‣ weiterlesen