Ein ‘Hase und Igel-Spiel’ von Angriff und Abwehr

Sorgt künstliche Intelligenz
für mehr Cybersicherheit?

Künstliche Intelligenz soll zu mehr Cybersicherheit beitragen – so ist etwa maschinelles Lernen Bestandteil vieler gängiger Security-Software-Lösungen. Die Technologie steht jedoch nicht nur der abwehrenden Seite zur Verfügung. Und auch Deep Learning als Methode des maschinellen Lernens ist oft intransparent. Verbessert KI also die Cybersicherheit?

(Bild: ©kras99/stock.adobe.com)

Traditionelle Cybersecurity-Maßnahmen haben eine stark reaktive Vorgehensweise – neue Malware-Muster werden erst dann in die Signatur-Datenbank der Antivirenlösung aufgenommen, wenn sie identifiziert werden konnten. Im besten Fall befallen sie hauptsächlich Honeypots; in vielen Fällen aber auch IT-Netzwerke, die dagegen noch wehrlos sind. Bei durchschnittlich 394.000 neuen Malware-Varianten pro Tag ist ein 100-prozentiger Malware-Schutz schwer vorstellbar. Anti-Malwarelösungen nutzen die Heuristik, um Malware aufgrund ihres Verhaltens zu erkennen. Heuristik, also die Kunst aus unvollständigen Informationen das wahrscheinlichste Ergebnis abzuleiten, ist eine Form der künstlichen Intelligenz (KI) bzw. von Machine Learning.

Reaktive Spam-Filter

Auch traditionelle Spamfilter arbeiten rein reaktiv. Sie addieren das Scoring von Schlüsselwörtern im Content von E-Mails und klassifizieren eine Mail ab einem gewissen Schwellenwert als Spam. Kommt Machine Learning bei Spamfiltern zum Einsatz, werden neben Keywords beispielsweise auch ähnliche Keyword-Schreibweisen, zu viele Sonderzeichen und Großbuchstaben in einer Mail, versteckte HTML-Texte und auf Command and Control Server verweisende Unsubscribe-Links erkannt. Machine Learning sorgt dafür, dass die Filter trainiert werden und lernen. Arbeitet der E-Mail Empfänger beispielsweise in einer Bank, werden Keywords wie ‘Kredit’ oder das ‘?-Zeichen’ folgenlos akzeptiert. Durch künstliche Intelligenz in Spamfiltern werden Erkennungsraten von über 99 Prozent erreicht.

Machine Learning erkennt Muster

Machine Learning ist ein Teilgebiet des weiter gefassten Begriffs künstliche Intelligenz (Artificial Intelligence) und sollte nicht als Synonym verwendet werden. Durch maschinelles Lernen können in strukturierten Daten Muster identifiziert und unter anderen Bedingungen angewendet werden. Bei Spamfiltern ist es beispielsweise die Erkennung von typischen Verhalten, Textmustern, Keywords und Absendern, aber auch die Analyse von Mails, die vom Empfänger nachträglich als Spam klassifiziert werden. Bei Machine Learning wird die Erkennung neuer Muster ständig trainiert und zukünftig von Maschinen eigenständig angewendet. Wie bei Leistungssportlern dauert solch ein Training und führt erst nach einiger Zeit zu besseren Ergebnissen. Diese Zeitspanne muss von Anwendern einkalkuliert werden. Bei Machine Learning kommen Algorithmen zum Einsatz, die auf die Analyse und Wiedererkennung von Signaturen optimiert sind. Neben dieser Logik werden erkannte Muster allgemeingültig gespeichert und unter einem geänderten Kontext wiedererkannt. Die Funktionen von Machine Learning kommen mittlerweile in fast allen Cybersecurity-Lösungen vor.

Das könnte Sie auch interessieren

Patentanmeldungen im Bereich der additiven Fertigung (3D-Druck) sind zwischen 2013 und 2020 mit einer durchschnittlichen jährlichen Rate von 26,3 Prozent gestiegen. Wie das Europäische Patentamt weiter berichtet, wurden seit 2001 weltweit mehr als 50.000 bedeutende Erfindungen im Zusammenhang mit 3D-Druck-Technologien als internationale Patentfamilien (IPF) veröffentlicht. ‣ weiterlesen

Der Anteil der Unternehmen, die KI einsetzen, ist binnen eines Jahres von 9 auf 15 Prozent gestiegen. Das ist das Ergebnis einer Bitkom-Befragung unter 605 Unternehmen. Zwei Drittel von ihnen sehen KI als wichtigste Zukunftstechnologie.‣ weiterlesen

Derzeit erleben wir multiple Krisen - neben zunehmenden geopolitischen Spannungen entwickelt sich die Erderwärmung zu einer immer größeren Herausforderung. Das Umweltbundesamt rechnet bis Ende des 21. Jahrhunderts mit einer Erhöhung der mittleren Erdtemperatur um bis zu 5,7 Grad Celsius, sofern nicht kurzfristig eine massive Reduktion der CO2-Emissionen erfolgt. Wie der CO2-Fußabdruck dabei unterstützen kann, beschreibt ein Beitrag des Beratungsunternehmens Aflexio.‣ weiterlesen

Nachhaltigkeit und Wirtschaftlichkeit für den Industriesektor Hand in Hand? Dies kann Realität werden. Das kürzlich abgeschlossene Forschungsprojekt 'Climate Solution for Industries' (CS4I) unter Beteiligung des Fraunhofer IPA setzt bereits bei Investitionsentscheidungen an und widmet sich dem 'True Carbon Footprint'.‣ weiterlesen

Viele Anlagen und Rechner in der Industrie sind smart - so viel ist klar. Sie können sehen, hören und sprechen. Dass sie technisch nun auch riechen können, ist deshalb nicht verwunderlich. Technologien wie die 'AI Nose' sollen die Konsumgüterindustrie noch intelligenter machen und Unternehmen dabei helfen, Wettbewerbsvorteile zu sichern und auszubauen.‣ weiterlesen

Alle Beschäftigten in der Industrie sollen zukünftig in der Lage sein, KI-Tools zu bedienen, neue Prüfanwendungen einzurichten und zu warten - ohne Expertenwissen. Das ist das Ziel des Forschungsprojekts 'DeKIOps'. Unter Leitung der Arbeitsgruppe für Supply Chain Services des Fraunhofer-Instituts für Integrierte Schaltungen IIS wollen Senswork, Inovex und Eresult bis Ende 2025 Leitlinien und zwei Demonstratoren in industriellen Anwendungen entwickeln.‣ weiterlesen

Unternehmen reden viel über die möglichen Auswirkungen von KI- und ML-Anwendungen, aber oft wenig über deren Qualität. Und die hängt in erster Linie vom Dateninput ab. Der Datenspezialist Aparavi erklärt, wieso ein hochwertiges Dateninventar die Voraussetzung für eine sinn- und wertvolle KI- oder ML-Lösung ist.‣ weiterlesen

Viele Industrieunternehmen stoßen mit Ethernet und WLAN an ihre Grenzen. Denn für die Umsetzung von IIoT-Lösungen mit vernetzten Sensoren, Maschinen und anderen Geräten brauchen sie 5G-Netze. Doch noch zögern vor allem kleine und mittlere Unternehmen, in 5G zu investieren.‣ weiterlesen

Kontinuierliche Entwicklungen und zukunftsweisende Technologien treiben den Fortschritt der industriellen Kommunikation voran. Zu den Schlüsseltechnologien zählt Time-Sensitive Networking (TSN). John Browett, General Manager der CC-Link Partner Association (CLPA), erläutert, wie TSN die Voraussetzungen für den nächsten Schritt im digitalen Zeitalter schafft.‣ weiterlesen

Das Bundeskriminalamt zählte im vergangenen Jahr 136.865 Fälle von Cyberkriminalität und damit mehr Taten als im Jahr zuvor. Für deutsche Unternehmen beliefen sich die Schäden nach Angaben des Bitkom auf mehr als 203Mrd.€.‣ weiterlesen

Fast jedes vierte deutsche Unternehmen (24 Prozent) sieht Deutschland in der Forschung zu künstlicher Intelligenz weltweit in der Spitzengruppe. Das übersetzt sich bislang allerdings noch nicht in die Wirtschaft.‣ weiterlesen