Ein ‘Hase und Igel-Spiel’ von Angriff und Abwehr

Sorgt künstliche Intelligenz
für mehr Cybersicherheit?

Künstliche Intelligenz soll zu mehr Cybersicherheit beitragen – so ist etwa maschinelles Lernen Bestandteil vieler gängiger Security-Software-Lösungen. Die Technologie steht jedoch nicht nur der abwehrenden Seite zur Verfügung. Und auch Deep Learning als Methode des maschinellen Lernens ist oft intransparent. Verbessert KI also die Cybersicherheit?

(Bild: ©kras99/stock.adobe.com)

Traditionelle Cybersecurity-Maßnahmen haben eine stark reaktive Vorgehensweise – neue Malware-Muster werden erst dann in die Signatur-Datenbank der Antivirenlösung aufgenommen, wenn sie identifiziert werden konnten. Im besten Fall befallen sie hauptsächlich Honeypots; in vielen Fällen aber auch IT-Netzwerke, die dagegen noch wehrlos sind. Bei durchschnittlich 394.000 neuen Malware-Varianten pro Tag ist ein 100-prozentiger Malware-Schutz schwer vorstellbar. Anti-Malwarelösungen nutzen die Heuristik, um Malware aufgrund ihres Verhaltens zu erkennen. Heuristik, also die Kunst aus unvollständigen Informationen das wahrscheinlichste Ergebnis abzuleiten, ist eine Form der künstlichen Intelligenz (KI) bzw. von Machine Learning.

Reaktive Spam-Filter

Auch traditionelle Spamfilter arbeiten rein reaktiv. Sie addieren das Scoring von Schlüsselwörtern im Content von E-Mails und klassifizieren eine Mail ab einem gewissen Schwellenwert als Spam. Kommt Machine Learning bei Spamfiltern zum Einsatz, werden neben Keywords beispielsweise auch ähnliche Keyword-Schreibweisen, zu viele Sonderzeichen und Großbuchstaben in einer Mail, versteckte HTML-Texte und auf Command and Control Server verweisende Unsubscribe-Links erkannt. Machine Learning sorgt dafür, dass die Filter trainiert werden und lernen. Arbeitet der E-Mail Empfänger beispielsweise in einer Bank, werden Keywords wie ‘Kredit’ oder das ‘?-Zeichen’ folgenlos akzeptiert. Durch künstliche Intelligenz in Spamfiltern werden Erkennungsraten von über 99 Prozent erreicht.

Machine Learning erkennt Muster

Machine Learning ist ein Teilgebiet des weiter gefassten Begriffs künstliche Intelligenz (Artificial Intelligence) und sollte nicht als Synonym verwendet werden. Durch maschinelles Lernen können in strukturierten Daten Muster identifiziert und unter anderen Bedingungen angewendet werden. Bei Spamfiltern ist es beispielsweise die Erkennung von typischen Verhalten, Textmustern, Keywords und Absendern, aber auch die Analyse von Mails, die vom Empfänger nachträglich als Spam klassifiziert werden. Bei Machine Learning wird die Erkennung neuer Muster ständig trainiert und zukünftig von Maschinen eigenständig angewendet. Wie bei Leistungssportlern dauert solch ein Training und führt erst nach einiger Zeit zu besseren Ergebnissen. Diese Zeitspanne muss von Anwendern einkalkuliert werden. Bei Machine Learning kommen Algorithmen zum Einsatz, die auf die Analyse und Wiedererkennung von Signaturen optimiert sind. Neben dieser Logik werden erkannte Muster allgemeingültig gespeichert und unter einem geänderten Kontext wiedererkannt. Die Funktionen von Machine Learning kommen mittlerweile in fast allen Cybersecurity-Lösungen vor.

Das könnte Sie auch interessieren

Was mit Produkten wie Siri oder Alexa für das eigene Zuhause bereits im Alltag angekommen ist, könnte auch in Produktionsumgebungen Mehrwerte schaffen - die Sprachsteuerung von Maschinen. Der Embedded-KI-Spezialist Aitad zeigt die Möglichkeiten auf.‣ weiterlesen

Die SPS wird im nächsten Jahr (2025) vom 25. bis zum 27. November in Nürnberg stattfinden und somit wieder auf den seit vielen Jahren bekannten Zeitraum zurückkehren.‣ weiterlesen

Laut aktuellem Lagebild Cyberkriminalität sind Taten aus dem Ausland erneut gestiegen während solche aus dem Inland leicht rückläufig waren. Mehr als 800 Unternehmen haben 2023 einen Ransomwareangriff angezeigt, wobei von einer weitaus höheren Dunkelziffer ausgegangen wird.‣ weiterlesen

Anfang Mai fand die offizielle Eröffnungsfeier des AAS Dataspace for Everybody statt. Die Plattform soll kleinen und mittleren Unternehmen den Zugang zu Datenräumen, digitalen Zwillingen und Verwaltungsschalen erleichtern.‣ weiterlesen

3 Prozent der großen Industrieunternehmen setzen GenAI bereits großflächig ein, und rund ein Viertel hat erste Pilotprojekte gestartet. Laut einer Untersuchung der Unternehmensberatung McKinsey kann die Mehrheit der Unternehmen den Mehrwert der Technologie für den Unternehmenserfolg bislang aber noch nicht beziffern.‣ weiterlesen

Die Industrie arbeitet daran, die Barrieren zwischen IT und OT abzubauen. So können Unternehmen ihre Produktion effizienter und innovativer gestalten und im immer härter werdenden globalen Wettbewerb bestehen. Francis Chow von Red Hat erklärt, welche Rolle Open-Source-Technologien dabei spielen.‣ weiterlesen

Für dauerhafte Wettbewerbsfähigkeit müssen deutsche Hersteller angesichts weiterhin drohender Rezession und hoher Energiekosten die nächste Stufe der Digitalisierung erreichen. Die Mehrheit der Unternehmen bereitet sich in diesem Zug auf Smart Manufacturing vor, wie eine von Statista durchgeführte und Avanade beauftragte Studie zeigt.‣ weiterlesen

Ein Bericht von ABI Research und Palo Alto Networks über den Stand der OT-Sicherheit zeigt, dass im vergangenen Jahr eines von vier Industrieunternehmen seinen Betrieb aufgrund eines Cyberangriffs vorübergehend stilllegen musste. Die Komplexität beim Einsatz von OT-Sicherheitslösungen stellt für die Befragten das größte Hindernis dar.‣ weiterlesen

Eine Umfrage von Hewlett Packard Enterprise (HPE) unter 400 Führungskräften in Industrie-Unternehmen in Deutschland zeigt, dass zwei Drittel der Befragten den Data Act als Chance wahrnehmen. Der Data Act stieß unter anderem bei Branchenverbänden auf Kritik.‣ weiterlesen

Deutsche Unternehmen nehmen eine zunehmende Bedrohung durch Cyber-Angriffe wahr. Das zeigt eine aktuelle Umfrage vom Markt- und Meinungsforschungsinstitut YouGov im Auftrag von 1&1 Versatel, an der mehr als 1.000 Unternehmensentscheider teilnahmen.‣ weiterlesen

Fraunhofer-Forschende haben für Fahrer und Fahrerinnen von Baumaschinen einen Helm mit integriertem Beschleunigungssensor entwickelt. Die Helm-Sensorik misst die Vibrationen der Baumaschinen. Die Sensorsignale werden analysiert, eine Software zeigt die Belastung für den Menschen an.‣ weiterlesen