Exklusiv für Abonnenten

Geodaten in der Produktion

Äußere Einflüsse miteinbeziehen

Geht es darum, die Produktion anhand von Daten effizienter zu gestalten, denken viele sofort an Maschinendaten – beispielsweise wenn es um vorausschauende Wartung geht. Doch dies sind nicht die einzigen Daten, die Verbesserungspotenzial versprechen. Auch Geodaten gehören dazu.

(Bild: ©Esri Deutschland GmbH)

Data Scientists gehören zu den wichtigsten Schlüsselfiguren unserer Zeit. Ohne ihre Fähigkeit, selbst größte Datenmengen zu analysieren und smarte Entscheidungen daraus abzuleiten, wäre unsere Wirtschaft nicht dort, wo sie heute steht. Es gibt jedoch eine Dimension von Daten, die von vielen Data Scientists noch immer übersehen wird – und das ist die der Geoinformationen. Gerade für produzierende Unternehmen spielen diese jedoch eine essenzielle Rolle, denn ohne sie ist es kaum möglich, potenzielle Risiken ebenso wie Innovationen und nachhaltigere Alternativen bereits frühzeitig zu erkennen.

Der fehlende Geofaktor

Die Bandbreite von Geodaten ist groß und reicht von einfachen Adressinformationen bis hin zu Satelliten- und Wetterdaten. Werden sie nicht oder nur kaum berücksichtigt, lässt sich kaum ein dauerhafter Rundumblick gewinnen. Stattdessen würde es immer tote Winkel geben – und das gilt auch für die Produktion. Trotzdem sind viele Data Scientists noch immer damit beschäftigt, sich allein auf die verwendeten Materialien oder Prozessabläufe zu fokussieren – geobasierte Risiken bleiben in vielen Fällen unentdeckt.

Das Ökosystem im Blick behalten

Neben internen Prozessabläufen ist es wichtig, die gesamte Unternehmensumwelt im Auge zu behalten. Ein Beispiel dafür ist die Vulnerabilität der Lieferketten. Kommt es zu Störungen, werden Vorprodukte nicht rechtzeitig geliefert und die Bänder stehen im schlimmsten Fall still. Aber auch unvorhersehbare punktuelle Ereignisse wie z.B. die Blockade des Suezkanals im März können Kettenreaktionen aulösen. Doch wie können sich Unternehmen besser auf unvorhersehbare Ereignisse vorbereiten und Ausfälle minimieren? Daten stehen ihnen zwar häufig in ausreichender Menge zu Verfügung, doch die richtigen Schlüsse daraus zu generieren und sie in den Kontext der Unternehmensziele zu stellen, ist die Aufgabe der Data Scientists.

Sie können dabei helfen, Fragen zu beantworten wie: Was passiert, wenn Zulieferer A ausfällt, und welche Alternativen sind die wirtschaftlichsten? Welche Auswirkung hat die Störung der Transportroute B auf welchen Betrieb? Ist Prozess C wirklich noch der beste, auch wenn sich die Rahmenbedingungen geändert haben? Durch Geodaten und deren Analyse und Visualisierung, gewinnen Business-Systeme eine neue Dimension dazu, durch die Abhängigkeiten und Wechselwirkungen schneller zu erfassen sind und Alternativen aufgezeigt werden, um so die bestmögliche Entscheidung zu treffen. Das gilt sowohl für die Optimierung, die Prävention als auch für den Fall einer Störung.

Das könnte Sie auch interessieren

Eine neue Studie des Capgemini Research Institute geht der Frage nach, wie es um Nachhaltigkeit bei der Nutzung generativer KI (GenAI) steht. Der Studie ‘Developing sustainable Gen AI’ zufolge hat GenAI erhebliche und zunehmende negative Aus­wirkungen auf die Umwelt.‣ weiterlesen

Ist die Industrie 4.0 eine Revolution? Aus Sicht des Fraunhofer Instituts für System - und Innovationsforschnung lautet die Antwort: nein. Die Forschenden kommen in ihrer Veröffentlichung zu dem Schluss, dass sich eher von einer Evolution sprechen lasse.‣ weiterlesen

Laut einer repräsentativen Umfrage des Bitkom nimmt die digitale Abhängigkeit der deutschen Wirtschaft zu. Mit Blick auf die USA und China stellt dies die Unternehmen vor Herausforderungen.‣ weiterlesen

Stärkere Regulierungen sowie bessere Gegenmaßnahmen haben laut einer Untersuchung des Security-Spezialisten Check Point dazu geführt, dass die Ransomware-Angfriffe in Deutschland zurückgegangen sind, weltweit haben sie jedoch zugenommen.‣ weiterlesen

Innovationsführerschaft und Wettbewerbsfähigkeit sind entscheidende Faktoren für den Erfolg eines Unternehmens. Die Kooperation mit Startups kann etablierte Unternehmen dabei unterstützen Innovationszyklen zu beschleunigen, neue Geschäftsmodelle zu etablieren oder Prozesse im Unternehmen effizienter zu gestalten. Das Venture-Client-Modell ist eine vergleichsweise neue Form der Zusammenarbeit mit Startups, und erweist sich als effektiver und effizienter als andere Corporate Venturing Modelle. ‣ weiterlesen

Die digitale Transformation wird zur Schlüsselfrage für den Erfolg im Maschinen- und Anlagenbau. Welche Handlungsoptionen Unternehmen dabei haben, beleuchtet die Impuls-Stiftung des VDMA in ihrer neuen Kurzstudie 'Erfolgsfaktoren digitaler Geschäftsmodelle', die vom Institut FIR der RWTH Aachen erstellt wurde.‣ weiterlesen