Exklusiv für Abonnenten

Sprint zum Machine Vision-Prototyp

Vier Anwendungen für eine Trägerplatine

Neben der Rechenleistung sind bei Embedded Vision-Lösungen oft kompakte Maße gefragt. Um Anwendern ein kompaktes Setting und schnelle Prototypen zu ermöglichen, hat Teledyne FLIR einen Quartettträger mit TX2-Modul vorgestellt. Vier Beispiele illustrieren die Einsatzmöglichkeiten.

(Bild: Teledyne FLIR LLC)

Immer mehr industrielle Applikationen setzen auf Embedded Vision-Komponenten. Die Quartet Embedded Solution für TX2 von Teledyne FLIR ist auf besonders platzsparende Anwendungen ausgerichtet. Auf der enthaltenden Trägerplatine können bis zu vier Machine Vision-Kameras mit der Bandbreite von USB 3.0 angeschlossen werden. Das System beinhaltet den Deep Learning-Hardwarebeschleuniger Nvidia Jetson TX2 und ist im Spinnaker SDK von FLIR vorintegriert. Kurz nach der Markteinführung berichtet der Hersteller von Anfragen von Anwendern, die damit Systeme für Inspektion, mobile Robotik oder Drohnen entwickeln wollen. Damit wird klar, dass beim Einsatz der Platine eine Fülle unterschiedlicher Möglichkeiten bestehen. Als Inspiration für eigene Projekte stellt dieser Artikel vier prototypische Anwendungen vor, die ersten drei verwenden das KI-Verfahren Deep Learning.

Kennzeichenerkennung

Für die Kennzeichenerkennung kam ein handelsübliches Deep Learning-Modell von Nvidia zur Nummernschilderkennung (LPDNet)1 zum Einsatz, um die Position der Nummernschilder zu erkennen. Um die Buchstaben und Ziffern zu erkennen, nutzten die Entwickler bei FLIR die Tesseract Open-Source-OCR-Engine2. Bei der Kamera handelte es sich um eine Blackfly S 8,9 MP Platinenfarbkamera (BFS-U3-88S6C-BD) mit Sony IMX267-Sensor. Die Projektteilnehmer begrenzten die Region of Interest für die Kennzeichenerkennung, um die Leistung zu beschleunigen, und wendeten Tracking an, um das System robuster zu machen. Die Ausgabe enthält Begrenzungsrahmen der Kennzeichen zusammen mit den entsprechenden Nummernschildzeichen. Entwicklungszeit: Zwei bis drei Wochen, in erster Linie um das System robuster und schneller zu machen. Testbilder: In LPDNet enthalten

Fahrzeugtyp-Kategorisierung

Für Anwendungsfall 2 ‘Fahrzeugtyp-Kategorisierung’ mittels Transferlernen haben die Entwickler ein eigenes Deep Learning-Objekterkennungsmodell auf drei Spielzeugautos SUV, Limousine und LKW trainiert. Es wurden etwa 300 Testbilder des Setups aus unterschiedlichen Entfernungen und Winkeln aufgenommen. Bei der Kamera handelte es sich um eine Blackfly S 5 MP Platinenfarbkamera (BFS-U3-51S5C-BD) mit Sony IMX250-Sensor. Die Mitarbeiter annotierten etwa drei Stunden lang die Begrenzungsrahmen der Spielzeugautos. Mittels Transferlernen trainierten sie das eigene Objekterkennungsmodell SSD MobileNet3, was auf einer Nvidia GTX1080 Ti GPU etwa einen halben Tag dauerte. Mithilfe des GPU-Hardwarebeschleunigers kann das Jetson TX2-Modul Deep Learning-Inferenz durchführen und Begrenzungsrahmen der Autos zusammen mit den entsprechenden Fahrzeugtypen ausgeben. Entwicklungszeit: ca. zwölf Stunden, inklusive Bildaufnahme und -annotation, etwa 300 Testbilder.

Das könnte Sie auch interessieren

Data Sharing birgt großes Potenzial, wird aber kaum genutzt. Rechtssicherheit, gemeinsame Modelle und finanzielle Anreize könnten Unternehmen zum Teilen bewegen, so repräsentative eine ZEW-Studie mit 1.400 Firmen.‣ weiterlesen

Laut der Staufen-Studie 'Performance-Treiber 2024' gehen acht von zehn der mehr als 200 befragten Industrieunternehmen davon aus, dass die Einführung neuer Technologien für einen Produktivitätsschub sorgen wird. Vor allem in der Datenanalyse werden große Potenziale gesehen.‣ weiterlesen

Mehr als 700 Ingenieure und Entwickler geben in aktueller Protolabs-Studie Einblicke zu momentanen und künftigen Herausforderungen der Produktentwicklung. Demnach wissen Unternehmen mit Problemen wie etwa Materialknappheit umzugehen. Andere Einflussfaktoren wirken sich jedoch stärker aus.‣ weiterlesen

Das TCS Thought Leadership Institute hat rund fast 1.300 CEOs und Führungskräfte zum Thema künstliche Intelligenz befragt. Mehr als die Hälfte der Befragten glaubt demnach, dass die Bedeutung von KI größer oder gleich groß sein wird wie die des Internets (54 Prozent) und des Smartphones (59 Prozent). Um von den Effekten durch KI zu profitieren, müssen sich jedoch vielerorts auch Strukturen ändern.‣ weiterlesen

Deutsche und Schweizer C-Level Manager sehen besonders für das Homeoffice Handlungsbedarf, um dort in der Zukunft sensible Daten besser zu schützen. Die Österreicher halten Smart-Building-Technologien für anfällig. Dies zeigen die Ergebnisse einer Studie des Security-Spezialisten Sophos.‣ weiterlesen

Leistungsfähige Mikrochips sind entscheidend für den erfolgreichen Einsatz von künstlicher Intelligenz (KI). Das am Karlsruher Institut für Technologie koordinierte, vom Bundesforschungsministerium geförderte Projekt EDAI verfolgt einen neuen Ansatz: Die Forschenden koppeln den Entwurf von KI-Algorithmen und KI-Chips.‣ weiterlesen

Washtec produziert Autowaschtechnik für Kunden auf der ganzen Welt. Der Erfinder der Portalwaschanlage beschäftigt rund 1.800 Angestellte in mehr als 80 Ländern und hat mehr als zehntausend Waschanlagen an sein Kundenportal angeschlossen. Die anfallenden Daten werden dazu genutzt, den Anlagenbetrieb zu optimieren und neue Services zu ermöglichen.‣ weiterlesen

Was mit Produkten wie Siri oder Alexa für das eigene Zuhause bereits im Alltag angekommen ist, könnte auch in Produktionsumgebungen Mehrwerte schaffen - die Sprachsteuerung von Maschinen. Der Embedded-KI-Spezialist Aitad zeigt die Möglichkeiten auf.‣ weiterlesen

Der Forschungsbeirat Industrie 4.0 stellt mit seiner Engineering-Roadmap und den darin enthaltenen Themenblöcken einen Rahmen für konkrete Forschungsschwerpunkte der nächsten zehn Jahre vor. Im Mittelpunkt stehen vier Hauptthemen.‣ weiterlesen

Die SPS wird im nächsten Jahr (2025) vom 25. bis zum 27. November in Nürnberg stattfinden und somit wieder auf den seit vielen Jahren bekannten Zeitraum zurückkehren.‣ weiterlesen

Laut aktuellem Lagebild Cyberkriminalität sind Taten aus dem Ausland erneut gestiegen während solche aus dem Inland leicht rückläufig waren. Mehr als 800 Unternehmen haben 2023 einen Ransomwareangriff angezeigt, wobei von einer weitaus höheren Dunkelziffer ausgegangen wird.‣ weiterlesen