Wie mit Daten die Entwicklung beschleunigt werden kann

Der digitale Zwilling im Fahrzeugbau

Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden jedoch immer häufiger die Basis für virtuelle Testumgebungen: Digitale Zwillinge erlauben die virtuelle Berechnung von Fahrphysik sowie einzelner Fahrzeugkomponenten bis hin zur Simulation ganzer Fahrereignisse. Moderne Data-Processing-Verfahren sind dabei nicht nur unabdingbar. Auf Grundlage der Datenauswertung kann das Fahrerlebnis optimiert und die Wartung erleichtert werden. Das Potenzial von Big Data aus dem PKW reicht bis hin zur Unterstützung autonomer Mobilitätsszenarien.

(Bild: @ArchMen/Fotolia.com)

Je intelligenter – und damit in der gewünschten Konsequenz auch autonomer – Fahrzeuge und ihre On-Board-Systeme werden, umso mehr tritt auch das Thema Softwareentwicklung für die Automotive-Branche in den Fokus. Schon heute liegen Unmengen an digitalen Informationen vor, die von modernen Fahrzeugen produziert werden und deren Umfang künftig sicherlich weiterwachsen wird. Damit sind Themen wie Software Development, Machine Learning und Data Processing auch bei den Fahrzeugherstellern längst erfolgskritische Größen. Werden Informationen zum physischen Fahrverhalten des PKW unter verschiedensten Witterungsbedingungen und den Metadaten aus Design, Produktion und After-Sales mit synthetischen Ereignismodellen integriert, entstehen Simulationsumgebungen, die hohe Anforderungen an die Datenverarbeitung stellen. Die gute Nachricht ist, dass parallel zur schieren Datenmasse allerdings auch die Möglichkeiten zur Verarbeitung von Big Data wachsen.

Deutliche Effizienzsteigerungen im Messdatenmanagement

Gigantische Datenvolumina aus dem Auto, darunter auch non-binäre Signaldaten, lassen sich inzwischen besser und schneller parallel übertragen. Eine unabhängige Analyse unterschiedlichster Datenquellen, -typen und -klassen ist damit ebenfalls realisierbar. Ausgereifte Signal-Processing-Verfahren sorgen dafür, dass Daten auf bis zu zehn Prozent des ursprünglichen Volumens reduziert werden und die Datenbereitstellung daher mittlerweile um den Faktor 40 im Vergleich zu bisher eingesetzten Standardverfahren beschleunigt werden kann. Intelligente Big-Data-Verfahren haben gelernt, sowohl die immensen Datenmengen aus der Fahrzeugsensorik, als auch die dazugehörigen Backend-Logdateien flexibel und effizient zu verarbeiten. Damit können die Analyse und Auswertung von Testkennzahlen sowie die Ergebnisse aus Prüfstands-Experimenten mit einem zunehmend höheren Automatisierungsgrad durchgeführt werden. Der Einsatz von sogenannten Digitalen Mock-Ups (DMUs), also eines virtuellen Spiegelbilds des zugehörigen Fahrzeug-Backends, liefert stichhaltige Analysen, ohne ein neues Gerät direkt mit dem Fahrzeug in der Praxis testen zu müssen.

Unterschiedliche Formate verlangen nach einheitlicher Kodierung

Lange Zeit bestand im Messdatenmanagement die wesentliche Herausforderung darin, unterschiedliche Aufzeichnungsformate unter einen Hut zu bekommen und damit eine parallele Datenübertragung zu ermöglichen. Datentypen wie etwa ASAM MDF oder ATFX konnten für eine parallele Verarbeitung nicht genutzt werden. Diese Problematik wurde vor allem durch die Format- und Kodierungswechsel einzelner Samples hervorgerufen – ein Phänomen, das entsteht, wenn Signale aus den Sensoren und Geräten mit unterschiedlichen Nachrichtentypen und -frequenzen aufgezeichnet werden. Big Data Frameworks wie Hadoop können die strukturelle Heterogenität der Momentaufnahmen aus den Sensor-Clustern und Statusberichten der einzelnen Geräte kaum handhaben. Neuartige Verfahren, wie etwa Norcom Dasense oder Big Data Signal Processing (BDSP), schlüsseln die Simulationsdateien MDF4, DAT oder CSV oder die Trace-Formate ASC, ATFX, ADTF und VPCAP auf und wandeln sie in verteilte Formate wie beispielsweise ORC oder Parquet um.

Sowohl die Transkodierung als auch die Analyse der Messdaten finden in einem skalierbaren Computer-Cluster statt – so können auch ad hoc schnell große Datenvolumen abgearbeitet werden. Die Reduzierung der Originaldaten auf zehn Prozent ihrer ursprünglichen Größe ist im Wesentlichen durch zwei Faktoren möglich: Zum einen verzichtet BDSP auf die Sample-basierte Darstellung der ursprünglichen Messdaten; zum anderen werden Signalredundanzen minimiert. Ein weiterer Vorteil einer intelligenten Transkodierung liegt darin, dass die umgewandelten Big-Data-Formate gleich die nötigen Berechnungsvorschriften erfüllen, um Analysen auf möglichst vielen Maschinen parallel durchführen zu können. Typische Engineering-Fragestellungen zu Steuerprozessen, On-Board-Funktionen und Fahrzeugverhalten können so binnen weniger Minuten beantwortet werden.

Das könnte Sie auch interessieren

61 Prozent der Unternehmen in Deutschland wollen laut einer Bitkom-Befragung per Cloud interne Prozesse digitalisieren, vor einem Jahr waren es nur 45 Prozent. Mittelfristig wollen die Unternehmen mehr als 50 Prozent ihrer Anwendungen in die Cloud verlagern.‣ weiterlesen

Mit generativer KI erlebt 'Right Brain AI', also eine KI, die kreative Fähigkeiten der rechten menschlichen Gehirnhälfte nachahmt, derzeit einen rasanten Aufstieg. Dieser öffnet aber auch die Tür für einen breiteren Einsatz von eher analytischer 'Left Brain AI'. Das zeigt eine aktuelle Studie von Pegasystems.‣ weiterlesen

Um klima- und ressourcengerechtes Bauen voranzubringen, arbeiten Forschende der Bergischen Universität Wuppertal in ihrem Projekt TimberConnect an der Optimierung von digitalen Prozessen entlang der Lieferkette von Holzbauteilen. Ihr Ziel ist unter anderem, digitale Produktpässe zu erzeugen.‣ weiterlesen

Rund zwei Drittel der Erwerbstätigen in Deutschland verwenden ChatGPT und Co. zumindest testweise, 37 Prozent arbeiten regelmäßig mit KI-Anwendungen. Doch auch Cyberkriminelle machen sich vermehrt die Stärken künstlicher Intelligenz zunutze - mit weitreichenden Folgen.‣ weiterlesen

Erstmals seit der Energiekrise verzeichnet der Energieeffizienz-Index der deutschen Industrie mit allen drei Teilindizes (die Bedeutung, Produktivität und Investitionen betreffend) einen leichten Rückgang. Mögliche Gründe erkennt EEP-Institutsleiter Professor Alexander Sauer in der Unsicherheit und der drohenden Rezession, der dadurch getriebenen Prioritätenverschiebung und der Reduktion von Produktionskapazität.‣ weiterlesen

Mehr als jedes dritte Unternehmen wurde in den letzten zwei Jahren Opfer von Cyberkriminalität - am häufigsten durch Phishing, Attacken auf Cloud-Services oder Datenlecks. Dies geht aus einer Studie des Beratungsunternehmens KPMG hervor. Darin schätzt der Großteil der befragten Unternehmen das eigene Risiko als hoch oder sehr hoch ein.‣ weiterlesen

Wie kann man die virtuelle Realität (VR) haptisch, also durch den Tastsinn, erfahrbar machen? Der Saarbrücker Informatiker André Zenner ist in seiner Doktorarbeit der Antwort auf diese Frage ein großes Stück nähergekommen - indem er neue Geräte erfunden und die passende Software dazu entwickelt hat.‣ weiterlesen

Die Einführung generativer künstlicher Intelligenz ist oft mit Herausforderungen verbunden, etwa wenn es um den Datenschutz geht. Für die Industrie verspricht die Technologie jedoch Potenziale, sofern richtig eingesetzt. Die APPL-Firmengruppe nutzt GenAI beispielsweise, um Maschinenstörungen abzustellen.‣ weiterlesen

Eine aktuelle Studie von Protolabs, zu der mehr als 700 Ingenieure weltweit befragt und Daten der Industrie ausgewertet wurden, zeigt den aktuellen und künftigen Zustand der additiven Fertigung auf. Demnach wächst der Markt sogar schneller als bisher angenommen.‣ weiterlesen

Die Integration von Ergonomie in den Entwicklungsprozess von Maschinen und Arbeitsplätzen spielt eine entscheidende Rolle für die Kosteneffizienz und die Benutzerfreundlichkeit. Virtual Reality (VR) bietet einen modernen Ansatz, um frühzeitige Ergonomieuntersuchungen zu beschleunigen und zu verbessern. Die Integration von VR ermöglicht eine realistische Simulation menschlicher Bewegungen und vermeidet kostspielige spätere Anpassungen. Die Anwendung erfordert jedoch geeignete Hardware und Software sowie geschultes Personal.‣ weiterlesen

Die Innovationstätigkeit in Digitaltechnologien nimmt weiter an Fahrt auf. Und laut Deutschem Patent- und Markenamt dominieren die USA und China in diesen Bereichen. Die deutsche Bilanz ist zwiespältig.‣ weiterlesen