Wie mit Daten die Entwicklung beschleunigt werden kann

Der digitale Zwilling im Fahrzeugbau

Fahrzeugbauer erhalten Erkenntnisse über die Qualität und Fahrverhalten neuer Automodelle unter Realbedingungen. Die dabei gesammelten Daten bilden jedoch immer häufiger die Basis für virtuelle Testumgebungen: Digitale Zwillinge erlauben die virtuelle Berechnung von Fahrphysik sowie einzelner Fahrzeugkomponenten bis hin zur Simulation ganzer Fahrereignisse. Moderne Data-Processing-Verfahren sind dabei nicht nur unabdingbar. Auf Grundlage der Datenauswertung kann das Fahrerlebnis optimiert und die Wartung erleichtert werden. Das Potenzial von Big Data aus dem PKW reicht bis hin zur Unterstützung autonomer Mobilitätsszenarien.

(Bild: @ArchMen/Fotolia.com)

Je intelligenter – und damit in der gewünschten Konsequenz auch autonomer – Fahrzeuge und ihre On-Board-Systeme werden, umso mehr tritt auch das Thema Softwareentwicklung für die Automotive-Branche in den Fokus. Schon heute liegen Unmengen an digitalen Informationen vor, die von modernen Fahrzeugen produziert werden und deren Umfang künftig sicherlich weiterwachsen wird. Damit sind Themen wie Software Development, Machine Learning und Data Processing auch bei den Fahrzeugherstellern längst erfolgskritische Größen. Werden Informationen zum physischen Fahrverhalten des PKW unter verschiedensten Witterungsbedingungen und den Metadaten aus Design, Produktion und After-Sales mit synthetischen Ereignismodellen integriert, entstehen Simulationsumgebungen, die hohe Anforderungen an die Datenverarbeitung stellen. Die gute Nachricht ist, dass parallel zur schieren Datenmasse allerdings auch die Möglichkeiten zur Verarbeitung von Big Data wachsen.

Deutliche Effizienzsteigerungen im Messdatenmanagement

Gigantische Datenvolumina aus dem Auto, darunter auch non-binäre Signaldaten, lassen sich inzwischen besser und schneller parallel übertragen. Eine unabhängige Analyse unterschiedlichster Datenquellen, -typen und -klassen ist damit ebenfalls realisierbar. Ausgereifte Signal-Processing-Verfahren sorgen dafür, dass Daten auf bis zu zehn Prozent des ursprünglichen Volumens reduziert werden und die Datenbereitstellung daher mittlerweile um den Faktor 40 im Vergleich zu bisher eingesetzten Standardverfahren beschleunigt werden kann. Intelligente Big-Data-Verfahren haben gelernt, sowohl die immensen Datenmengen aus der Fahrzeugsensorik, als auch die dazugehörigen Backend-Logdateien flexibel und effizient zu verarbeiten. Damit können die Analyse und Auswertung von Testkennzahlen sowie die Ergebnisse aus Prüfstands-Experimenten mit einem zunehmend höheren Automatisierungsgrad durchgeführt werden. Der Einsatz von sogenannten Digitalen Mock-Ups (DMUs), also eines virtuellen Spiegelbilds des zugehörigen Fahrzeug-Backends, liefert stichhaltige Analysen, ohne ein neues Gerät direkt mit dem Fahrzeug in der Praxis testen zu müssen.

Unterschiedliche Formate verlangen nach einheitlicher Kodierung

Lange Zeit bestand im Messdatenmanagement die wesentliche Herausforderung darin, unterschiedliche Aufzeichnungsformate unter einen Hut zu bekommen und damit eine parallele Datenübertragung zu ermöglichen. Datentypen wie etwa ASAM MDF oder ATFX konnten für eine parallele Verarbeitung nicht genutzt werden. Diese Problematik wurde vor allem durch die Format- und Kodierungswechsel einzelner Samples hervorgerufen – ein Phänomen, das entsteht, wenn Signale aus den Sensoren und Geräten mit unterschiedlichen Nachrichtentypen und -frequenzen aufgezeichnet werden. Big Data Frameworks wie Hadoop können die strukturelle Heterogenität der Momentaufnahmen aus den Sensor-Clustern und Statusberichten der einzelnen Geräte kaum handhaben. Neuartige Verfahren, wie etwa Norcom Dasense oder Big Data Signal Processing (BDSP), schlüsseln die Simulationsdateien MDF4, DAT oder CSV oder die Trace-Formate ASC, ATFX, ADTF und VPCAP auf und wandeln sie in verteilte Formate wie beispielsweise ORC oder Parquet um.

Sowohl die Transkodierung als auch die Analyse der Messdaten finden in einem skalierbaren Computer-Cluster statt – so können auch ad hoc schnell große Datenvolumen abgearbeitet werden. Die Reduzierung der Originaldaten auf zehn Prozent ihrer ursprünglichen Größe ist im Wesentlichen durch zwei Faktoren möglich: Zum einen verzichtet BDSP auf die Sample-basierte Darstellung der ursprünglichen Messdaten; zum anderen werden Signalredundanzen minimiert. Ein weiterer Vorteil einer intelligenten Transkodierung liegt darin, dass die umgewandelten Big-Data-Formate gleich die nötigen Berechnungsvorschriften erfüllen, um Analysen auf möglichst vielen Maschinen parallel durchführen zu können. Typische Engineering-Fragestellungen zu Steuerprozessen, On-Board-Funktionen und Fahrzeugverhalten können so binnen weniger Minuten beantwortet werden.

Das könnte Sie auch interessieren

Patentanmeldungen im Bereich der additiven Fertigung (3D-Druck) sind zwischen 2013 und 2020 mit einer durchschnittlichen jährlichen Rate von 26,3 Prozent gestiegen. Wie das Europäische Patentamt weiter berichtet, wurden seit 2001 weltweit mehr als 50.000 bedeutende Erfindungen im Zusammenhang mit 3D-Druck-Technologien als internationale Patentfamilien (IPF) veröffentlicht. ‣ weiterlesen

Der Anteil der Unternehmen, die KI einsetzen, ist binnen eines Jahres von 9 auf 15 Prozent gestiegen. Das ist das Ergebnis einer Bitkom-Befragung unter 605 Unternehmen. Zwei Drittel von ihnen sehen KI als wichtigste Zukunftstechnologie.‣ weiterlesen

Derzeit erleben wir multiple Krisen - neben zunehmenden geopolitischen Spannungen entwickelt sich die Erderwärmung zu einer immer größeren Herausforderung. Das Umweltbundesamt rechnet bis Ende des 21. Jahrhunderts mit einer Erhöhung der mittleren Erdtemperatur um bis zu 5,7 Grad Celsius, sofern nicht kurzfristig eine massive Reduktion der CO2-Emissionen erfolgt. Wie der CO2-Fußabdruck dabei unterstützen kann, beschreibt ein Beitrag des Beratungsunternehmens Aflexio.‣ weiterlesen

Nachhaltigkeit und Wirtschaftlichkeit für den Industriesektor Hand in Hand? Dies kann Realität werden. Das kürzlich abgeschlossene Forschungsprojekt 'Climate Solution for Industries' (CS4I) unter Beteiligung des Fraunhofer IPA setzt bereits bei Investitionsentscheidungen an und widmet sich dem 'True Carbon Footprint'.‣ weiterlesen

Viele Anlagen und Rechner in der Industrie sind smart - so viel ist klar. Sie können sehen, hören und sprechen. Dass sie technisch nun auch riechen können, ist deshalb nicht verwunderlich. Technologien wie die 'AI Nose' sollen die Konsumgüterindustrie noch intelligenter machen und Unternehmen dabei helfen, Wettbewerbsvorteile zu sichern und auszubauen.‣ weiterlesen

Alle Beschäftigten in der Industrie sollen zukünftig in der Lage sein, KI-Tools zu bedienen, neue Prüfanwendungen einzurichten und zu warten - ohne Expertenwissen. Das ist das Ziel des Forschungsprojekts 'DeKIOps'. Unter Leitung der Arbeitsgruppe für Supply Chain Services des Fraunhofer-Instituts für Integrierte Schaltungen IIS wollen Senswork, Inovex und Eresult bis Ende 2025 Leitlinien und zwei Demonstratoren in industriellen Anwendungen entwickeln.‣ weiterlesen

Unternehmen reden viel über die möglichen Auswirkungen von KI- und ML-Anwendungen, aber oft wenig über deren Qualität. Und die hängt in erster Linie vom Dateninput ab. Der Datenspezialist Aparavi erklärt, wieso ein hochwertiges Dateninventar die Voraussetzung für eine sinn- und wertvolle KI- oder ML-Lösung ist.‣ weiterlesen

Viele Industrieunternehmen stoßen mit Ethernet und WLAN an ihre Grenzen. Denn für die Umsetzung von IIoT-Lösungen mit vernetzten Sensoren, Maschinen und anderen Geräten brauchen sie 5G-Netze. Doch noch zögern vor allem kleine und mittlere Unternehmen, in 5G zu investieren.‣ weiterlesen

Kontinuierliche Entwicklungen und zukunftsweisende Technologien treiben den Fortschritt der industriellen Kommunikation voran. Zu den Schlüsseltechnologien zählt Time-Sensitive Networking (TSN). John Browett, General Manager der CC-Link Partner Association (CLPA), erläutert, wie TSN die Voraussetzungen für den nächsten Schritt im digitalen Zeitalter schafft.‣ weiterlesen

Das Bundeskriminalamt zählte im vergangenen Jahr 136.865 Fälle von Cyberkriminalität und damit mehr Taten als im Jahr zuvor. Für deutsche Unternehmen beliefen sich die Schäden nach Angaben des Bitkom auf mehr als 203Mrd.€.‣ weiterlesen

Fast jedes vierte deutsche Unternehmen (24 Prozent) sieht Deutschland in der Forschung zu künstlicher Intelligenz weltweit in der Spitzengruppe. Das übersetzt sich bislang allerdings noch nicht in die Wirtschaft.‣ weiterlesen