Qualitätskontrolle


Antrainierte Muster

Unabhängig davon, ob es um die Erkennung von Fehlern auf Stahloberflächen, Risse in Tabletten oder Mängel bei der Fertigung von Wafern geht – die Bildverarbeitung basiert grundsätzlich auf einem Mustervergleich: Um zuverlässige und wiederholbare Ergebnisse zu erhalten, muss das Bildverarbeitungssystem eintrainierte Muster schnell und exakt mit den tatsächlichen Objekten auf dem Fließband abgleichen. Den ersten Schritt dazu bildet die korrekte räumliche Erfassung des Prüfteils oder Objekts innerhalb des Sichtfelds der Kamera. Die Anwendung ist erfolglos, wenn das Teil nicht präzise lokalisiert wird. Hat das System die entsprechenden Merkmale erkannt, prüft und misst die Software das Objekt und vergleicht die Ergebnisse mit den Spezifikationen. Anschließend erfolgen die Entscheidung (Pass oder Fail) und die Kommunikation der Ergebnisse an die Steuerungssoftware der Anlage. Die zugrunde liegenden Algorithmen werden im Vorfeld mit Unmengen von Daten und Bildern trainiert, um Merkmale zu erkennen und Fehler wie etwa Risse klassifizieren zu können. Dabei kommen auch Machine Learning-Methoden oder neuronale Netze (Deep Learning) zum Einsatz, um die Genauigkeit permanent zu verbessern und Mängel bzw. Abweichungen von der Spezifikation besser zu erkennen.

Klassifizierungsmodelle erstellen

Intel selbst verwendet für die Qualitätskontrolle in der Waferfertigung hochauflösende Fotos von Rasterelektronenmikroskopen als Input für die Bildverarbeitungsalgorithmen. Die Auswertung der großen Datenmengen, das Training der Algorithmen und Modelle sowie das Erstellen von genauen Klassifizierungsmodellen erfolgen auf Basis von Servern mit Intel Xeon Prozessoren. Darüber hinaus bietet Intel Field Programmable Gate Arrays (FPGAs) für den Einsatz in den Kameras oder als Beschleuniger für die Bildverarbeitung in Edge-Computern, in denen die KI-Anwendung in der Nähe der Videokamera arbeitet. Mit dem Toolkit Openvino stellt der Chiphersteller zudem ein spezielles Werkzeug für Deep-Learning-Frameworks wie Tensor Flow, MX Net und Caffe bereit. Die FPGAs (Field Programmable Gate Array) stammen aus den Serien Intel Max 10 FPGA, Cyclone IV und Cyclone V. Sie bieten eine hohe Leistung pro Watt, niedrige Latenzzeit und lassen sich flexibel an eine Vielzahl von Bildsensoren sowie MV-spezifische Schnittstellen anpassen, beispielsweise Camera Link oder GigE Vision. Auf diese Weise können Firmen Bilderfassung, Kameraschnittstellen, Vorverarbeitung in Framegrabbern und Kommunikation in einem einzigen FPGA-Gerät integrieren.

Das könnte Sie auch interessieren

Wissenschaftler der Uni Siegen haben ein digitales Wirtschaftsschulbuch entwickelt. Im Vordergrund stehen Experimente, ökonomische Szenarien und der Reflexionsprozess.‣ weiterlesen

Anzeige

Die aktuelle Auswertung der IFAA-Trendanalyse macht sehr deutlich: Die Fachkräftesicherung ist das Topthema in den Unternehmen. Das zeigt, wie präsent der Fachkräftemangel ist. In den vergangenen Jahren erhöhte sich ebenso die Bedeutung von lebenssituationsabhängigen Arbeitszeiten. Ein klarer Trend: Unternehmen handeln und beweisen Flexibilität beim Thema Arbeitszeit.‣ weiterlesen

Anzeige

T-Systems integriert den Supercomputer des Hochleistungsrechenzentrums in Stuttgart in die Open Telekom Cloud, was für Unternehmen eine immense Steigerung der Rechenleistung bedeutet.‣ weiterlesen

xxx‣ weiterlesen

Beim Fachkongress IT meets Industry treffen sich am 19. und 20. November in Mannheim Fach- und Führungskräfte aus IT und OT. Der Schwerpunkt der Veranstaltung liegt auf der IT-Sicherheit in der Industrie.‣ weiterlesen

Ob kürzere Montagezeiten oder neuartige After-Sales-Dienstleistungen: Augmented Reality (AR) bietet Industrieunternehmen viel Potenzial für Prozessoptimierung und Produktinnovationen. Was bei der Einführung zu beachten ist – damit haben sich zwei Forschungsprojekte beschäftigt.‣ weiterlesen